heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #3
avatar+26398 
+2
1 апр. 2020 г.
 #3
avatar+26398 
+1
31 мар. 2020 г.
 #1
avatar+26398 
+2

In the diagram below,
we have \(\angle PQR = \angle PRQ = \angle STR = \angle RST\), \(QR = 8\), and \(QS = 2\).
Find PQ.

 

\(\text{Let PQ = x }\)

 

\(\begin{array}{|rcll|} \hline \text{In $\triangle PQR$}: \\ \hline \mathbf{\dfrac{\sin(180^\circ-2A)}{8}} &=& \mathbf{\dfrac{\sin(A)}{x}} \\\\ \dfrac{\sin(2A)}{8} &=& \dfrac{\sin(A)}{x} \\\\ \dfrac{2\sin(A)\cos(A)}{8} &=& \dfrac{\sin(A)}{x} \\\\ \dfrac{2\cos(A)}{8} &=& \dfrac{1}{x} \\\\ \dfrac{\cos(A)}{4} &=& \dfrac{1}{x} \\\\ \dfrac{4}{\cos(A)} &=& x \\\\ \mathbf{x} &=& \mathbf{\dfrac{4}{\cos(A)}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \text{In $\triangle SQR$}: \\ \hline \mathbf{\dfrac{\sin(3A-180^\circ)}{2}} &=& \mathbf{\dfrac{\sin(180^\circ-A)}{8}} \\\\ \dfrac{\sin\Big(-(180^\circ-3A)\Big)}{2} &=& \dfrac{\sin(A)}{8} \\\\ \dfrac{-\sin(180^\circ-3A)}{2} &=& \dfrac{\sin(A)}{8} \\\\ \dfrac{-\sin(3A)}{2} &=& \dfrac{\sin(A)}{8} \\\\ -\sin(3A) &=& \dfrac{\sin(A)}{4} \small{ \begin{array}{|rcll|} \hline && \mathbf{\sin(3A)} \\ &=&\sin(2A)\cos(A)+\cos(2A)\sin(A)\\ &=&2\sin(A)\cos(A)\cos(A)+\Big(\cos^2(A)-\sin^2(A)\Big)\sin(A) \\ &=&2\sin(A)\cos^2(A)+\Big(\cos^2(A)-\sin^2(A)\Big)\sin(A) \\ &=&2\sin(A)\cos^2(A)+\Big(\cos^2(A)-(1-\cos^2(A))\Big)\sin(A) \\ &=&2\sin(A)\cos^2(A)+\Big(2\cos^2(A)-1\Big)\sin(A) \\ &=&\sin(A)\Bigg( 2\cos^2(A)+\Big(2\cos^2(A)-1\Big) \Bigg) \\ &=&\mathbf{\sin(A)\Big( 4\cos^2(A)-1\Big)} \\ \hline \end{array} } \\\\ -\sin(A)\Big( 4\cos^2(A)-1\Big) &=& \dfrac{\sin(A)}{4} \\ - \Big( 4\cos^2(A)-1\Big) &=& \dfrac{1}{4} \\ -4\cos^2(A)+1 &=& \dfrac{1}{4} \quad | \quad * (-4) \\ 16\cos^2(A)-4 &=& -1 \\ 16\cos^2(A) &=& 3 \quad | \quad \sqrt{()} \\ 4\cos(A) &=& \sqrt{3} \\ \mathbf{\cos(A)} &=& \mathbf{\dfrac{\sqrt{3}}{4}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{x} &=& \mathbf{\dfrac{4}{\cos(A)}} \\\\ x &=& \dfrac{4}{\dfrac{\sqrt{3}}{4}} \\\\ \mathbf{x} &=& \mathbf{\dfrac{16}{ \sqrt{3} } } \\ \hline \end{array}\)

 

PQ \(= \mathbf{\dfrac{16}{ \sqrt{3} } = 9.23760430703 }\)

 

laugh

31 мар. 2020 г.
 #2
avatar+26398 
+4

A square is inscribed in a right triangle, as shown below.

The legs of the triangle are 2 and 3. 

Find the side length of the square.

 

 

\(\text{Let $A=(0,\ 0)$ } \\ \text{Let $B=(x_b,\ y_b)=(\sqrt{13},\ 0)$ } \\ \text{Let $C=(x_c,\ y_c)=\Big(2\cos(A),\ 2\sin(A)\Big)$ } \\ \text{Let $ \cos(A)=\dfrac{2}{\sqrt{13}},\ \sin(A)=\dfrac{3}{\sqrt{13}}$ } \)

 

\(\begin{array}{|lrcll|} \hline & \tan{\varphi} &=& \dfrac{2}{2+3} \\\\ & \tan{\varphi} &=& \dfrac{2}{5} \\\\ \text{line }1: & y &=& \tan{\varphi}*x \\\\ & \mathbf{y} &=& \mathbf{\dfrac{2}{5}*x} \\ \\ \hline \text{line }2: & \dfrac{y-y_b}{x-x_b} &=& \dfrac{y_c-y_b}{x_c-x_b} \\\\ &&& \boxed{x_b=\sqrt{13},\ y_b = 0,\quad x_c=\dfrac{4}{\sqrt{13}},\ y_c = \dfrac{6}{\sqrt{13}} } \\\\ & \dfrac{y}{x-\sqrt{13}} &=& \dfrac{\dfrac{6}{\sqrt{13}}}{\dfrac{4}{\sqrt{13}}-\sqrt{13}} \\\\ & \dfrac{y}{x-\sqrt{13}} &=& \dfrac{6}{4-13} \\\\ & \dfrac{y}{x-\sqrt{13}} &=& -\dfrac{2}{3} \\\\ & \mathbf{y} &=& \mathbf{-\dfrac{2}{3}(x-\sqrt{13})} \\ \hline \end{array}\)

 

The intersection point of both lines:

\(\begin{array}{|rcll|} \hline y= \dfrac{2}{5}*x &=& -\dfrac{2}{3}(x-\sqrt{13}) \\\\ \dfrac{2}{5}*x &=& -\dfrac{2}{3}(x-\sqrt{13}) \\\\ \dfrac{9}{10}*x &=& -(x-\sqrt{13}) \\\\ \dfrac{9}{10}*x &=& -x+\sqrt{13} \\\\ x+ \dfrac{9}{10}*x &=& \sqrt{13} \\\\ \dfrac{19}{10}*x &=& \sqrt{13} \\\\ x &=& \dfrac{10\sqrt{13}}{19} \\\\ y = s &=& \dfrac{3}{5}x \\\\ s &=& \dfrac{3}{5}*\dfrac{10\sqrt{13}}{19} \\\\ s &=& \dfrac{6}{19} \sqrt{13} \\ \mathbf{s} &=& \mathbf{1.13859513962} \\ \hline \end{array}\)

 

The side length of the square is \(\mathbf{\dfrac{6}{19} \sqrt{13} = 1.13859513962}\)

 

laugh

30 мар. 2020 г.