heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
+2

Algebra
Compute the sum \(\mathbf{\dfrac{2}{1 \cdot 2 \cdot 3} + \dfrac{2}{2 \cdot 3 \cdot 4} + \dfrac{2}{3 \cdot 4 \cdot 5} + \cdots}\)

 

\(\begin{array}{lcll} \mathbf{ \dfrac{2}{1 \cdot 2 \cdot 3} + \dfrac{2}{2 \cdot 3 \cdot 4} + \dfrac{2}{3 \cdot 4 \cdot 5} + \dfrac{2}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{2}{n \cdot (n+1) \cdot (n+2)} + \cdots =\ \mathbf{ ? } } \\ \begin{array}{|lcll|} \hline s_n = \dfrac{2}{1 \cdot 2 \cdot 3} + \dfrac{2}{2 \cdot 3 \cdot 4} + \dfrac{2}{3 \cdot 4 \cdot 5} + \dfrac{2}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{2}{n \cdot (n+1) \cdot (n+2)} \\ \hline \end{array} \\ \end{array}\\\)

 

Formula:
\(\begin{array}{|lcll|} \hline \text{in general}:\ \frac{1}{n(n+d)} = \frac{1}{d}\left(\frac{1}{n}- \frac{1}{n+d} \right) \\ \hline \\ \begin{array}{lrcll} \text{we need}: & \dfrac{1}{(n+1)(n+2)} &=& \dfrac{1}{n+1}-\dfrac{1}{n+2} \\ & \dfrac{1}{n(n+1)} &=& \dfrac{1}{n}-\dfrac{1}{n+1} \\ & \dfrac{1}{n(n+2)} &=& \dfrac{1}{2} \left( \dfrac{1}{n}-\dfrac{1}{n+2} \right) \\ \end{array} \\ \hline \end{array}\)

 

we rearrange:
\(\begin{array}{|rcll|} \hline \dfrac{2}{n \cdot (n+1) \cdot (n+2)} \\\\ &=& \dfrac{2}{n}\times \dfrac{1}{(n+1) \cdot (n+2)} \\\\ &=& \dfrac{2}{n}\times \left( \dfrac{1}{n+1}-\dfrac{1}{n+2} \right) \\\\ &=& \dfrac{2}{n}\times \dfrac{1}{n+1} - \dfrac{2}{n}\times \dfrac{1}{n+2} \\\\ &=& 2\times \left(\dfrac{1}{n}-\dfrac{1}{n+1} \right)- 2\times \dfrac{1}{2} \times \left(\dfrac{1}{n} -\dfrac{1}{n+2} \right) \\\\ &=& \dfrac{2}{n} - \dfrac{2}{n+1} -\dfrac{1}{n} + \dfrac{1}{n+2} \\\\ \mathbf{\dfrac{2}{n \cdot (n+1) \cdot (n+2)} } & \mathbf{=} & \mathbf{ \dfrac{1}{n} - \dfrac{2}{n+1} + \dfrac{1}{n+2} } \\ \hline \end{array}\)

 

telescoping series
\(\begin{array}{|rcll|} \hline s_n &=& \mathbf{\dfrac{1}{1}} &\mathbf{-}& \mathbf{\dfrac{2}{2}} &\color{red}+& \color{red}\dfrac{1}{3} \\\\ &\mathbf{+}& \mathbf{\dfrac{1}{2}} &\color{red}-& \color{red}\dfrac{2}{3} &\color{blue}+& \color{blue}\dfrac{1}{4} \\\\ &\color{red}+& \color{red}\dfrac{1}{3} &\color{blue}-& \color{blue}\dfrac{2}{4} &\color{red}+& \color{red}\dfrac{1}{5} \\\\ &\color{blue}+& \color{blue}\dfrac{1}{4} &\color{red}-& \color{red}\dfrac{2}{5} &\color{green}+& \color{green}\dfrac{1}{6} \\\\ && \ldots \\\\ &+\color{red}& \color{red}\dfrac{1}{n-2} &\color{green}-& \color{green}\dfrac{2}{n-1} &\color{red}+& \color{red}\dfrac{1}{n} \\\\ &\color{green}+& \color{green}\dfrac{1}{n-1} &\color{red}-& \color{red}\dfrac{2}{n} &\mathbf{+}& \mathbf{\dfrac{1}{n+1}} \\\\ &\color{red}+& \color{red}\dfrac{1}{n} &\mathbf{-}& \mathbf{\dfrac{2}{n+1}} &\mathbf{+}& \mathbf{\dfrac{1}{n+2}} \\ \hline \end{array}\)


The part of each term cancelling with part of the next two diagonal terms:
Example:
\(\begin{array}{|lcll|} \hline \frac{1}{3}-\frac{2}{3}+\frac{1}{3} = 0 \\ \frac{1}{4}-\frac{2}{4}+\frac{1}{4} = 0 \\ \frac{1}{5}-\frac{2}{5}+\frac{1}{5} = 0 \\ \ldots \\ \frac{1}{n}-\frac{2}{n} + \frac{1}{n} = 0 \\ \hline \end{array}\)

 

So s_n is, we have all black terms left :
\(\begin{array}{|rcll|} \hline s_n &=& \dfrac{1}{1}-\dfrac{2}{2}+\dfrac{1}{2} + \dfrac{1}{n+1} - \dfrac{2}{n+1} + \dfrac{1}{n+2} \\\\ \mathbf{s_n} &\mathbf{=}& \mathbf{\dfrac{1}{2} - \dfrac{1}{n+1} + \dfrac{1}{n+2}} \\ \hline \end{array}\)

 

\(\lim \limits_{n\to \infty} { \dfrac{1}{n+1}} = 0 \quad \text{ and } \quad \lim \limits_{n\to \infty} { \dfrac{1}{n+2} } = 0\)

 

\( \begin{array}{|rcll|} \hline \lim \limits_{n\to \infty} s_n &=& \dfrac{1}{2} - 0 + 0 \\ &=& \dfrac{1}{2} \\ \hline \end{array}\)

 

\(\begin{array}{lcll} \mathbf{ \dfrac{2}{1 \cdot 2 \cdot 3} + \dfrac{2}{2 \cdot 3 \cdot 4} + \dfrac{2}{3 \cdot 4 \cdot 5} + \dfrac{2}{4 \cdot 5 \cdot 6} + \cdots \ + \dfrac{2}{n \cdot (n+1) \cdot (n+2)} + \cdots =\ \mathbf{ \dfrac{1}{2} } } \\ \end{array}\)

 

laugh

2 апр. 2020 г.
 #1
avatar+26398 
+2
1 апр. 2020 г.
 #6
avatar+26398 
+3

Let \(f(x)=(x^2+6x+9)^{50}-4x+3\), and let \(r_1,\ r_2,\ \ldots,\ r_{100}\) be the roots of \( f(x)\).
Compute \((r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100}\).

 

\(\begin{array}{|rcll|} \hline \mathbf{f(x)} &=& \mathbf{(x^2+6x+9)^{50}-4x+3} \\ &=& \left((x+3)^2\right)^{50}-4x+3 \\ \mathbf{f(x)} &=& \mathbf{\left( x+3 \right)^{100}-4x+3} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline & f(r_1) =0 &=& \left( r_1+3 \right)^{100}-4r_1+3 \\ & f(r_2) =0 &=& \left( r_2+3 \right)^{100}-4r_2+3 \\ & \ldots \\ & f(r_{100}) =0 &=& \left( r_{100}+3 \right)^{100}-4r_{100}+3 \\ & \hline \\ \text{sum} & 0 &=& (r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100} \\ & && -4(r_1+r_2+\ldots + r_{100}) + 3\cdot 100 \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100} &=& 4(r_1+r_2+\ldots + r_{100}) - 300 \\ \hline \end{array}\)

 

\(\mathbf{\text{vieta:}}\)
For any polynomial equation
\(0=x^n+a_{n-1}·x^{n-1}+...+a_2·x^2+a_1·x^1+a_0\)
with the solutions \(r_1\dots r_n\), the relatively simple formulas for \(a_0\) and \(a_{n-1}\) are:
\(a_0=(-1)^n \prod\limits_{k=1}^{n} r_k \\ a_{n-1}= -\sum \limits_{k=1}^{n} r_k\)

 

\(\begin{array}{|rcll|} \hline && \left( x+3 \right)^{100} \\ \\ &=& x^{100} + \binom{100}{1}x^{99}\cdot 3 + \ldots \\ \\ &=& x^{100} + \underbrace{300}_{ \underbrace{=a_{n-1}}_{= -(r_1+r_2+\ldots + r_{100})}} x^{99} + \ldots \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline (r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100} &=& 4(r_1+r_2+\ldots + r_{100}) - 300 \\ && \boxed{r_1+r_2+\ldots + r_{100} = -300} \\ (r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100} &=& 4(-300) - 300 \\ \mathbf{(r_1+3)^{100}+(r_2+3)^{100}+\cdots+(r_{100}+3)^{100}} &=& \mathbf{-1500} \\ \hline \end{array}\)

 

 

See here: https://math.stackexchange.com/questions/2165329/vietas-formula-hard-problem

 

laugh

1 апр. 2020 г.