heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #10
avatar+26398 
+1

The system of equations \(\dfrac{xy}{x + y} = 1, \quad \dfrac{xz}{x + z} = 2, \quad \dfrac{yz}{y + z} = 3\)
has one ordered triple solution \((x,y,z)\).

What is the value of in this solution?

 

\(\begin{array}{|rcll|} \hline \dfrac{xy}{x + y} &=& 1 \\\\ \dfrac{x + y}{xy} &=& 1 \\\\ \dfrac{x}{xy}+\dfrac{y}{xy} &=& 1 \\\\ \mathbf{\dfrac{1}{y}+\dfrac{1}{x}} &=& \mathbf{1} \qquad (1) \\ \hline \end{array} \begin{array}{|rcll|} \hline \dfrac{xz}{x + z} &=& 2 \\\\ \dfrac{x + z}{xz} &=& \dfrac{1}{2} \\\\ \dfrac{x}{xz}+\dfrac{z}{xz} &=& \dfrac{1}{2} \\\\ \mathbf{\dfrac{1}{z}+\dfrac{1}{x}} &=& \mathbf{\dfrac{1}{2}} \qquad (2) \\ \hline \end{array} \begin{array}{|rcll|} \hline \dfrac{yz}{y + z} &=& 3 \\\\ \dfrac{y + z}{yz} &=& \dfrac{1}{3} \\\\ \dfrac{y}{yz}+\dfrac{z}{yz} &=& \dfrac{1}{3} \\\\ \mathbf{\dfrac{1}{z}+\dfrac{1}{y}} &=& \mathbf{\dfrac{1}{3}} \qquad (3) \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline -(1)+(2)+(3) : & -\dfrac{1}{y}-\dfrac{1}{x}+ \dfrac{1}{z}+\dfrac{1}{x}+ \dfrac{1}{z}+\dfrac{1}{y} &=& -1+\dfrac{1}{2}+\dfrac{1}{3} \\\\ & \dfrac{2}{z} &=& \dfrac{-1}{6} \\\\ & \dfrac{z}{2} &=& -6 \\\\ & \mathbf{z} &=& \mathbf{-12} \\ \hline \end{array} \\ \begin{array}{|lrcll|} \hline (1)-(2)+(3) : & \dfrac{1}{y}+\dfrac{1}{x}- \dfrac{1}{z}-\dfrac{1}{x}+ \dfrac{1}{z}+\dfrac{1}{y} &=& 1-\dfrac{1}{2}+\dfrac{1}{3} \\\\ & \dfrac{2}{y} &=& \dfrac{5}{6} \\\\ & \dfrac{y}{2} &=& \dfrac{6}{5} \\\\ & \mathbf{y} &=& \mathbf{\dfrac{12}{5}} \\ \hline \end{array} \\ \begin{array}{|lrcll|} \hline (1)+(2)-(3) : & \dfrac{1}{y}+\dfrac{1}{x}+ \dfrac{1}{z}+\dfrac{1}{x}-\dfrac{1}{z}-\dfrac{1}{y} &=& 1+\dfrac{1}{2}-\dfrac{1}{3} \\\\ & \dfrac{2}{x} &=& \dfrac{7}{6} \\\\ & \dfrac{x}{2} &=& \dfrac{6}{7} \\\\ & \mathbf{x} &=& \mathbf{\dfrac{12}{7}} \\ \hline \end{array} \)

 

laugh

26 мар. 2020 г.
 #7
avatar+26398 
+2

A regular dodecahedron \(P_1 P_2 P_3 \dotsb P_{12}\) is inscribed in a circle with radius \(1\).
Compute  \((P_1 P_2)^2 + (P_1 P_3)^2 + \dots + (P_{11} P_{12})^2\).
(The sum includes all terms of the form \((P_i P_j)^2\), where \(1 \le i < j \le 12\).

 

\(\small{ \begin{array}{|lrcll|} \hline \mathbf{\text{Compute}} \\ \hline &s=(P_1 P_2)^2 + (P_1 P_3)^2+(P_1 P_4)^2+(P_1 P_5)^2+(P_1 P_6)^2+(P_1 P_7)^2+(P_1 P_8)^2+(P_1 P_9)^2+(P_1 P_{10})^2+(P_1 P_{11})^2+(P_1 P_{12})^2 \\ & +(P_2 P_3)^2+(P_2 P_4)^2+(P_2 P_5)^2+(P_2 P_6)^2+(P_2 P_7)^2+(P_2 P_8)^2+(P_2 P_9)^2+(P_2 P_{10})^2+(P_2 P_{11})^2+(P_2 P_{12})^2 \\ & +(P_3 P_4)^2+(P_3 P_5)^2+(P_3 P_6)^2+(P_3 P_7)^2+(P_3 P_8)^2+(P_3 P_9)^2+(P_3 P_{10})^2+(P_3 P_{11})^2+(P_3 P_{12})^2 \\ & +(P_4 P_5)^2+(P_4 P_6)^2+(P_4 P_7)^2+(P_4 P_8)^2+(P_4 P_9)^2+(P_4 P_{10})^2+(P_4 P_{11})^2+(P_4 P_{12})^2 \\ & +(P_5 P_6)^2+(P_5 P_7)^2+(P_5 P_8)^2+(P_5 P_9)^2+(P_5 P_{10})^2+(P_5 P_{11})^2+(P_5 P_{12})^2 \\ & +(P_6 P_7)^2+(P_6 P_8)^2+(P_6 P_9)^2+(P_6 P_{10})^2+(P_6 P_{11})^2+(P_6 P_{12})^2 \\ & +(P_7 P_8)^2+(P_7 P_9)^2+(P_7 P_{10})^2+(P_7 P_{11})^2+(P_7 P_{12})^2 \\ & +(P_8 P_9)^2+(P_8 P_{10})^2+(P_8 P_{11})^2+(P_8 P_{12})^2 \\ & +(P_9 P_{10})^2+(P_9 P_{11})^2+(P_9 P_{12})^2 \\ & +(P_{10} P_{11})^2+(P_{10} P_{12})^2 \\ & +(P_{11} P_{12})^2 \\ \hline \end{array} }\)

 

\(\begin{array}{|rcll|} \hline (P_1 P_2)=(P_2 P_3)=(P_3 P_4)=(P_4 P_5)=(P_5 P_6)=(P_6 P_7)=(P_7 P_8) \\ =(P_8 P_9)=(P_9 P_{10})=(P_{10} P_{11})=(P_{11} P_{12})=(P_1 P_{12})= 2*\sin(15^\circ) \\\\ (P_1 P_2)=(P_2 P_4)=(P_3 P_5)=(P_4 P_6)=(P_5 P_7)=(P_6 P_8)=(P_7 P_9) \\ =(P_8 P_{10})=(P_9 P_{11})=(P_{10} P_{12})=(P_{1} P_{11})=(P_2 P_{12})= 2*\sin(30^\circ) \\\\ (P_1 P_4)=(P_2 P_5)=(P_3 P_6)=(P_4 P_7)=(P_5 P_8)=(P_6 P_9)=(P_7 P_{10}) \\ =(P_8 P_{11})=(P_9 P_{12})=(P_{1} P_{10})=(P_{2} P_{11})=(P_3 P_{12})= 2*\sin(45^\circ) \\\\ (P_1 P_5)=(P_2 P_6)=(P_3 P_7)=(P_4 P_8)=(P_5 P_9)=(P_6 P_{10})=(P_7 P_{11}) \\ =(P_8 P_{12})=(P_1 P_{9})=(P_{2} P_{10})=(P_{3} P_{11})=(P_5 P_{12})= 2*\sin(60^\circ) \\\\ (P_1 P_6)=(P_2 P_7)=(P_3 P_8)=(P_4 P_9)=(P_5 P_{10})=(P_6 P_{11})=(P_7 P_{12}) \\ =(P_1 P_{8})=(P_2 P_{9})=(P_{3} P_{10})=(P_{4} P_{11})=(P_5 P_{12})= 2*\sin(75^\circ) \\\\ (P_1 P_7)=(P_2 P_8)=(P_3 P_9)=(P_4 P_{10})=(P_5 P_{11})=(P_6 P_{12})= 2*\sin(90^\circ)=2 \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline s&=& 12*(2*\sin(15^\circ))^2 + 12*(2*\sin(30^\circ))^2+12*(2*\sin(45^\circ))^2 \\ && +12*(2*\sin(60^\circ))^2 +12*(2*\sin(75^\circ))^2+6*(2*\sin(90^\circ))^2 \\\\ s&=& 48\sin^2(15^\circ) + 48\sin^2(30^\circ)+48\sin^2(45^\circ) \\ && +48\sin^2(60^\circ) + 48\sin^2(75^\circ)+24 \\\\ s&=& 48\left( \sin^2(15^\circ) + \sin^2(30^\circ)+\sin^2(45^\circ)+\sin^2(60^\circ) + \sin^2(75^\circ) \right) +24 \\\\ s&=& 48\left( \sin^2(15^\circ) + \sin^2(30^\circ)+\sin^2(45^\circ)+\cos^2(30^\circ) + \cos^2(15^\circ) \right) +24 \\\\ s&=& 48\left( \sin^2(15^\circ) + \cos^2(15^\circ) + \sin^2(30^\circ)+\cos^2(30^\circ)+\sin^2(45^\circ)\right) +24 \\\\ s&=& 48\left( 2+\sin^2(45^\circ)\right) +24 \quad | \quad \sin(45^\circ)=\dfrac{\sqrt{2}}{2} \\\\ s&=& 48\left( 2+\dfrac{1}{2}\right) +24 \\\\ s&=& \dfrac{48*5}{2} +24 \\\\ s&=& 24*5 +24 \\\\ s&=& 24*6 \\\\ \mathbf{s}&=& \mathbf{144} \\\\ \mathbf{s} &=& \mathbf{12^2} \\ \hline \end{array}\)

 

The sum is \(\mathbf{12^2 = 144}\)

 

laugh

24 мар. 2020 г.