heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
+3

An equilateral triangle of side length 2 units is inscribed in a circle.

Find the length of a chord of this circle which passes through the midpoints of two sides of the triangle.

 

\(\begin{array}{|rcll|} \hline \text{In $\triangle COD$ } \\ \mathbf{r=\ ?} \\ \hline 2^2 &=& r^2+r^2-2rr\cos(120^\circ) \\ 4 &=& 2r^2\Big(1-\cos(120^\circ)\Big) \\ 2 &=& r^2\Big(1-\cos(120^\circ)\Big) \quad | \quad \cos(120^\circ) = -\dfrac{1}{2}\\ 2 &=& r^2\left(1+\dfrac{1}{2}\right) \\ 2 &=& \dfrac{3}{2}r^2 \\\\ \mathbf{r^2} &=& \mathbf{\dfrac{4}{3}} \\ \hline \end{array} \begin{array}{|rcll|} \hline \text{In $\triangle OED$ } \\ \mathbf{h=\ ?} \\ \hline 1+h^2 &=& r^2 \\ h^2 &=& r^2-1 \quad | \quad \mathbf{r^2=\dfrac{4}{3}} \\ h^2 &=& \dfrac{4}{3}-1 \\ h^2 &=& \dfrac{1}{3} \\\\ \mathbf{h^2} &=& \mathbf{\dfrac{1}{3}} \\ \mathbf{h} &=& \mathbf{\dfrac{1}{\sqrt{3}} } \\ \hline \end{array}\)

 

cos-rule:

\(\begin{array}{|rcll|} \hline \text{In $\triangle OEB$ } \\ \mathbf{x=\ ?} \\ \hline r^2 &=& h^2+x^2-2hx\cos(90^\circ+60^\circ) \\\\ r^2 &=& h^2+x^2-2hx\cos(150^\circ) \quad | \quad \mathbf{r^2=\dfrac{4}{3}},\ \mathbf{h^2=\dfrac{1}{3} } \\\\ \dfrac{4}{3} &=& \dfrac{1}{3}+x^2-2hx\cos(150^\circ) \quad | \quad \mathbf{h=\dfrac{1}{\sqrt{3}} },\ \cos(150^\circ)=-\dfrac{\sqrt{3}}{2} \\\\ 1 &=& x^2+\dfrac{2}{\sqrt{3}}x\dfrac{\sqrt{3}}{2} \\\\ 1 &=& x^2+x \\ \mathbf{x^2+x-1} &=& \mathbf{0} \\\\ x &=& \dfrac{-1\pm \sqrt{1^2-4(-1)} }{2} \\ x &=& \dfrac{-1\pm \sqrt{5} }{2} \\ x &=& \dfrac{-1 \mathbf{+} \sqrt{5} }{2} \\\\ \mathbf{x} &=& \mathbf{\dfrac{\sqrt{5}-1}{2}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \text{length of chord $\mathbf{= 1+2x}$} \\ \hline && 1+2x \\\\ &=& 1+ \mathbf{\dfrac{2(\sqrt{5}-1)}{2}} \\\\ &=& 1+ \sqrt{5}-1 \\ &=& \mathbf{\sqrt{5}} \\ \hline \end{array}\)

 

The length of the chord is \(\mathbf{\sqrt{5}} \qquad (=2.23606797750)\)

 

laugh

16 июн. 2020 г.
 #4
avatar+26398 
+2

Simplify


\(\dfrac { { a }^{ 3 }(b+c) }{ (a-b)(a-c) } +\dfrac { { b }^{ 3 }(a+c) }{ (b-a)(b-c) } +\dfrac { { c }^{ 3 }(b+a) }{ (c-b)(c-a) }\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{\dfrac {a^3(b+c) }{ (a-b)(a-c) } +\dfrac {b^3(a+c)}{ (b-a)(b-c) } +\dfrac {c^3(b+a)}{ (c-b)(c-a) } } \\\\ &=& \dfrac {a^3(b+c) }{ (a-b)(a-c) } -\dfrac {b^3(a+c)}{ (a-b)(b-c) } +\dfrac {c^3(a+b)}{ (b-c)(a-c) } \\\\ &=& \dfrac {a^3(b+c)(b-c)- b^3(a+c)(a-c)+c^3(a+b)(a-b)}{ (a-b)(a-c)(b-c) } \\\\ &=& \dfrac {a^3(b+c)(b-c)+c^3(a+b)(a-b)- b^3(a+c)(a-c)}{ (a-b)(a-c)(b-c) } \\\\ &=& \dfrac {a^3(b^2-c^2)+c^3(a^2-b^2)- b^3(a+c)(a-c)}{ (a-b)(a-c)(b-c) } \\\\ &=& \dfrac {a^3b^2-a^3c^2+c^3a^2-c^3b^2- b^3(a+c)(a-c)}{ (a-b)(a-c)(b-c) } \\\\ &=& \dfrac {a^3b^2-c^3b^2-a^3c^2+c^3a^2- b^3(a+c)(a-c)}{ (a-b)(a-c)(b-c) } \\\\ &=& \dfrac {b^2(a^3-c^3)-a^2c^2(a-c)- b^3(a+c)(a-c)}{ (a-b)(a-c)(b-c) } \\\\ &=& \dfrac {b^2(a-c)(a^2+ac+c^2)-a^2c^2(a-c)- b^3(a+c)(a-c)}{ (a-b)(a-c)(b-c) } \\\\ &=& \dfrac {(a-c)\left(b^2(a^2+ac+c^2)-a^2c^2- b^3(a+c)\right)}{ (a-b)(a-c)(b-c) } \\\\ &=& \dfrac { b^2(a^2+ac+c^2)-a^2c^2- b^3(a+c) }{ (a-b)(b-c) } \\\\ &=& \dfrac { b^2a^2+b^2ac+b^2c^2 -a^2c^2- b^3a-b^3c }{ (a-b)(b-c) } \\\\ &=& \dfrac { b^2a^2- b^3a +b^2ac-b^3c +b^2c^2 -a^2c^2 }{ (a-b)(b-c) } \\\\ &=& \dfrac { ab^2(a- b) +b^2c(a-b) -c^2( a^2-b^2) }{ (a-b)(b-c) } \\\\ &=& \dfrac { (ab^2+b^2c)(a- b)-c^2(a+b)(a-b) }{ (a-b)(b-c) } \\\\ &=& \dfrac {(a-b)\left( (ab^2+b^2c)-c^2(a+b)\right) }{ (a-b)(b-c) } \\\\ &=& \dfrac {ab^2+b^2c -c^2(a+b)}{(b-c) } \\\\ &=& \dfrac {ab^2+b^2c -c^2a-c^2b}{(b-c) } \\\\ &=& \dfrac {ab^2 -c^2a +b^2c-c^2b}{(b-c) } \\\\ &=& \dfrac {a(b^2 -c^2) +bc(b-c)}{(b-c) } \\\\ &=& \dfrac {a(b+c)(b-c) +bc(b-c)}{(b-c) } \\\\ &=& \dfrac {(b-c)\Big(a(b+c) +bc\Big)}{(b-c) } \\\\ &=& a(b+c) +bc \\ &=& \mathbf{ab+ac+bc} \\ \hline \end{array}\)

 

laugh

16 июн. 2020 г.
 #1
avatar+26398 
+2

Let \(\triangle MBT\) be a triangle with MB = 4 and MT = 7.
Furthermore, let circle \(\omega\) be a circle with center O which is tangent to MB at B and MT at some point on segment MT.
Given OM = 6 and \(\omega\) intersect BT at \(I \ne B\), find the length of \(TI\).

 

\(\text{Let $TI = \color{red}x$}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{r=\ ?} \\ \hline 4^2+r^2 &=& 6^2 \\ r^2 &=& 6^2 -4^2 \\ r^2 &=& 36-16 \\ r^2 &=& 20 \\ r^2 &=& 4*5 \\ \mathbf{r} &=& \mathbf{2\sqrt{5}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \cos(A) &=& \dfrac{4}{6} \\\\ \cos(A) &=& \dfrac{2}{3} \\\\ \mathbf{\cos^2(A)} &=& \mathbf{\dfrac{4}{9}} \\\\ \cos(2A) &=& \cos^2(A)-\sin^2(a) \\ \cos(2A) &=& \cos^2(A)-\left(1- cos^2(A) \right) \\ \mathbf{\cos(2A)} &=& \mathbf{2\cos^2(A)-1} \\\\ \cos(2A) &=& 2*\dfrac{4}{9}-1 \\\\ \cos(2A) &=& \dfrac{8}{9}-1 \\\\ \cos(2A) &=& \dfrac{8}{9}-\dfrac{9}{9} \\\\ \mathbf{\cos(2A)} &=& \mathbf{-\dfrac{1}{9}} \\ \hline \end{array}\)

 

cos-rule:

\(\begin{array}{|rcll|} \hline BT^2 &=& 4^2+7^2-2*4*7*\cos(2A) \\ BT^2 &=& 16+49-56\cos(2A) \quad | \quad \mathbf{\cos(2A)=-\dfrac{1}{9}} \\ BT^2 &=& 16+49+56*\dfrac{1}{9} \\ BT^2 &=& 65+\dfrac{56}{9} \\ BT^2 &=& \dfrac{9*65+56}{9} \\ BT^2 &=& \dfrac{641}{9} \\ \mathbf{BT} &=& \mathbf{\dfrac{\sqrt{641}}{3}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{x=\ ?} \\ \hline 3^2 &=& x(x+BI) \quad | \quad BI = BT -x \\ 9 &=& x(x+BT -x) \\ 9 &=& x*BT \\ x &=& \dfrac{9}{BT} \quad | \quad \mathbf{BT=\dfrac{\sqrt{641}}{3}} \\\\ x &=& \dfrac{9}{\dfrac{\sqrt{641}}{3}} \\\\ x &=& \dfrac{3*9}{ \sqrt{641} } \\\\ x &=& \dfrac{27}{ \sqrt{641} } \\\\ x &=& \dfrac{27}{ 25.3179778023 } \\\\ \mathbf{x} &=& \mathbf{1.06643588247} \\ \hline \end{array}\)

 

The length of TI is  \(\approx \mathbf{1}\)

 

laugh

15 июн. 2020 г.