heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #1
avatar+26398 
+2

If we divide a 2-digit positive integer by the sum of its digits,
we get the quotient and remainder of 4 and 3, respectively.
If we divide the same 2-digit positive by the product of its digits,
we get quotient and remainder of 3 and 5, respectively.
What is the 2-digit integer?

 

The 2-digit integer \(ab\) is \(10a + b\)

 

\(\begin{array}{|lrcll|} \hline & \begin{array}{rcll} \text{We divide a 2-digit positive integer}\\ \text{by the sum of its digits} \\ \end{array} \\ \hline (1): & \mathbf{\dfrac{10a + b}{a+b}} &=& \mathbf{4 + \dfrac{3}{a+b}} \quad | \quad \times (a+b) \\\\ & 10a + b &=& 4(a+b) + 3 \\ & 10a + b &=& 4a+4b + 3 \\ & 10a-4a + b-4b &=& 3 \\ & 6a-3b &=& 3 \quad | \quad : 3 \\ & 2a-b &=& 1 \\ & \mathbf{b} &=& \mathbf{2a-1} \\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline & \begin{array}{rcll} \text{We divide a 2-digit positive integer}\\ \text{by the product of its digits} \\ \end{array} \\ \hline (2): & \mathbf{\dfrac{10a + b}{ab}} &=& \mathbf{3 + \dfrac{5}{ab}} \quad | \quad \times (ab) \\\\ & 10a + b &=& 3ab+5 \quad | \quad \mathbf{b=2a-1} \\ & 10a + 2a-1 &=& 3a(2a-1) + 5 \\ & 12a-1 &=& 6a^2-3a + 5 \\ & 6a^2 -15a +6 &=& 0 \quad | \quad : 3 \\ & \mathbf{2a^2 -5a +2} &=&\mathbf{ 0 } \\\\ & a &=& \dfrac{5\pm \sqrt{5^2-4*2*2} }{2*2} \\ & a &=& \dfrac{5\pm \sqrt{9}}{4} \\ & a &=& \dfrac{5\pm 3}{4} \\\\ & a &=& \dfrac{5+ 3}{4} \\\\ & a &=& \dfrac{8}{4} \\\\ & \mathbf{a} &=& \mathbf{2} \\\\ \text{or} & a &=& \dfrac{5- 3}{4} \\\\ & a &=& \dfrac{2}{4} \qquad \text{no integer }! \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{b} &=& \mathbf{2a-1} \quad | \quad \mathbf{a=2} \\\\ b &=& 2*2-1 \\ \mathbf{b} &=& \mathbf{3} \\ \hline \end{array}\)

 

The 2-digit integer ab is \(\mathbf{23}\)

 

laugh

7 июл. 2020 г.
 #2
avatar+26398 
+2

Find the value of the sum \(\dbinom{99}{0} - \dbinom{99}{2} + \dbinom{99}{4}- \dbinom{99}{6} + \dots - \dbinom{99}{98}\)

 

 

\((1+i)^{99}=\dbinom{99}{0}+i\dbinom{99}{1}-\dbinom{99}{2}-i\dbinom{99}{3}+\dbinom{99}{4}+i\dbinom{99}{5}- \ldots -\dbinom{99}{98}-i\dbinom{99}{99} \qquad (1)\)

 

Note here that \(\binom{99}{0} - \binom{99}{2} + \binom{99}{4}- \binom{99}{6} + \dots - \binom{99}{98}\) is the real part of (1).

 

 

\(\begin{array}{|rcll|} \hline 1+i &=& \sqrt{1^2+1^2} \Bigg(\cos\Big( \arctan(\frac{1}{1} )\Big) +i\sin\Big( \arctan(\frac{1}{1} )\Big) \Bigg) \\ 1+i &=& \sqrt{2} \Big(\cos(45^\circ) +i\sin(45^\circ) \Big) \\ \hline (1+i)^{99} &=& \Bigg( \sqrt{2} \Big(\cos(45^\circ) +i\sin(45^\circ) \Big) \Bigg)^{99} \\ (1+i)^{99} &=& 2^{\frac{99}{2}} \Big(\cos(99*45^\circ) +i\sin(99*45^\circ) \Big) \\ (1+i)^{99} &=& 2^{\frac{99}{2}} \Big(\cos(4455^\circ) +i\sin(4455^\circ) \Big) \\ (1+i)^{99} &=& 2^{\frac{99}{2}} \Big(\cos(135^\circ) +i\sin(135^\circ) \Big) \\ (1+i)^{99} &=& 2^{\frac{99}{2}} \Big(-\dfrac{\sqrt{2}}{2} +i\dfrac{\sqrt{2}}{2} \Big) \\ (1+i)^{99} &=& 2^{\frac{99}{2}} \Big(-2^{\frac{1}{2}-1} +i\dfrac{\sqrt{2}}{2} \Big) \\ (1+i)^{99} &=& 2^{\frac{99}{2}} \Big(-2^{-\frac{1}{2}} +i\dfrac{\sqrt{2}}{2} \Big) \\ (1+i)^{99} &=& 2^{\frac{99}{2}}*(-2^{-\frac{1}{2}}) +i*2^{\frac{99}{2}} *\dfrac{\sqrt{2}}{2} \\ (1+i)^{99} &=& -2^{\frac{99}{2}}2^{-\frac{1}{2}} +i*2^{\frac{99}{2}} *\dfrac{\sqrt{2}}{2} \\ (1+i)^{99} &=& -2^{\frac{99}{2}-\frac{1}{2}} +i*2^{\frac{99}{2}} *\dfrac{\sqrt{2}}{2} \\ (1+i)^{99} &=& -2^{\frac{98}{2}} +i*2^{\frac{99}{2}} *\dfrac{\sqrt{2}}{2} \\ (1+i)^{99} &=& \underbrace{\color{red}-2^{49}}_{\text{the real part}} +i*2^{\frac{99}{2}} *\dfrac{\sqrt{2}}{2} \\ \hline \end{array} \)

 

\(\dbinom{99}{0} - \dbinom{99}{2} + \dbinom{99}{4}- \dbinom{99}{6} + \dots - \dbinom{99}{98} = \mathbf{-2^{49}}\)

 

laugh

3 июл. 2020 г.
 #1
avatar+26398 
+3

Let a < b < c < d be four consecutive positive integers such that     

- a is divisible by 5,     
- b is divisible by 7,    
- c is divisible by 9, and      
- d is divisible by 11. 

Find the minimum value of a+b+c+d. 

 

\(\begin{array}{ll} \left.\begin{array}{rcl} a & \equiv & 0 \pmod{5} \\ b=a+1 & \equiv & 0 \pmod{7} \\ c=a+2 & \equiv & 0 \pmod{9} \\ d=a+3 & \equiv & 0 \pmod{11} \end{array}\right\} \begin{array}{rcl} a & \equiv & 0 \pmod{5} \\ a & \equiv & -1 \pmod{7} \\ a & \equiv & -2 \pmod{9} \\ a & \equiv & -3 \pmod{11} \end{array} \\\\ a+b+c+d = 4a+6 \\ \end{array} \)

 

\(\begin{array}{ll} \left.\begin{array}{rcl} a & \equiv & 0 \pmod{5} \\ a & \equiv & -1 \pmod{7} \\ \end{array}\right\} \begin{array}{rcl} a & \equiv & -15 \pmod{35} \\ \end{array} \\ \left.\begin{array}{rcl} a & \equiv & -2 \pmod{9} \\ a & \equiv & -3 \pmod{11} \end{array}\right\} \begin{array}{rcl} a & \equiv & -47 \pmod{99} \\ \end{array} \end{array} \)

 

\(\begin{array}{ll} \left.\begin{array}{rcl} a & \equiv & -15 \pmod{35} \\ a & \equiv & -47 \pmod{99} \\ \end{array}\right\} \begin{array}{rcl} a & \equiv & 1735 \pmod{3465} \\ a &=& 1735 + 3465n,\ n\in \mathbb{Z} \\ \end{array} \\ \end{array} \)

 

\(\text{The minimum value of $\mathbf{a}$ is $\mathbf{1735}$} \\ \text{The minimum value of $\mathbf{a+b+c+d} = 6*1735 + 4 \mathbf{=6946}$ } \)

 

Check:

\(\begin{array}{|rcll|} \hline 1735 & \equiv & 0 \pmod{5} \\ 1736 & \equiv & 0 \pmod{7} \\ 1737 & \equiv & 0 \pmod{9} \\ 1738 & \equiv & 0 \pmod{11} \\ \hline \end{array}\)

 

laugh

3 июл. 2020 г.