heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #1
avatar+26398 
+2

Find AC.

 

\(\text{Let $AB=c$ }\\ \text{Let $BC=a$ }\\ \text{Let $AC=x$ }\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\text{In }\triangle ABE:} \\ \hline \sin(90^\circ-\varphi) &=& \dfrac{c}{9} \\\\ \cos(\varphi) &=& \dfrac{c}{9} \\\\ \mathbf{c} &=&\mathbf{ 9\cos(\varphi)} \qquad (1) \\ \hline \end{array} \begin{array}{|rcll|} \hline \mathbf{\text{In }\triangle ABC:} \\ \hline \sin(90^\circ-2\varphi) &=& \dfrac{c}{x} \\\\ \cos(2\varphi) &=& \dfrac{c}{x} \\\\ \mathbf{c} &=&\mathbf{ x\cos(2\varphi)} \qquad (2) \\ \hline \end{array} \\ \begin{array}{|lrcll|} \hline (1)=(2): & c = \mathbf{ 9\cos(\varphi)} &=& \mathbf{ x\cos(2\varphi)} \\\\ & 9\cos(\varphi) &=& x\cos(2\varphi) \\\\ & \mathbf{x} &=& \mathbf{\dfrac{9\cos(\varphi) } {\cos(2\varphi)}} \\\\ & x &=& \dfrac{9\cos(\varphi) } {\cos^2(\varphi)-\sin^2(\varphi)} \\\\ & x\Big(\cos^2(\varphi)-\sin^2(\varphi)\Big) &=& 9\cos(\varphi) \quad | \quad : \cos^2(\varphi) \\\\ & x\Big(1-\tan^2(\varphi)\Big) &=& \dfrac{9}{\cos(\varphi)} \quad | \quad \dfrac{1}{\cos(\varphi)} = \sqrt{1+\tan^2(\varphi) } \\\\ & x\Big(1-\tan^2(\varphi)\Big) &=& 9\sqrt{1+\tan^2(\varphi) } \\\\ & \mathbf{x} &=& \mathbf{\dfrac{9\sqrt{1+\tan^2(\varphi) }} {1-\tan^2(\varphi)}} \qquad (3) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\text{In }\triangle ACD:} \\ \hline \sin(45^\circ+\varphi) &=& \dfrac{a}{8\sqrt{2}} \\\\ \dfrac{\sqrt{2}}{2}\Big(\sin(\varphi)+\cos(\varphi) \Big) &=& \dfrac{a}{8\sqrt{2}} \\\\ 8\Big(\sin(\varphi)+\cos(\varphi) \Big) &=& a \\\\ \mathbf{a} &=&\mathbf{8\Big(\sin(\varphi)+\cos(\varphi) \Big)} \qquad (4) \\ \hline \end{array} \begin{array}{|rcll|} \hline \mathbf{\text{In }\triangle ABC:} \\ \hline \sin(2\varphi) &=& \dfrac{a}{x} \quad | \quad \sin(2\varphi)=\dfrac{2\tan(\varphi)}{1+\tan^2(\varphi)} \\\\ \dfrac{2\tan(\varphi)}{1+\tan^2(\varphi)} &=& \dfrac{a}{x} \\\\ \mathbf{a} &=& \mathbf{\dfrac{2x\tan(\varphi)}{1+\tan^2(\varphi)}} \qquad (5) \\ \hline \end{array} \\ \begin{array}{|lrcll|} \hline (4)=(5): & a = \mathbf{8\Big(\sin(\varphi)+\cos(\varphi) \Big)} &=& \mathbf{\dfrac{2x\tan(\varphi)}{1+\tan^2(\varphi)}} \\\\ & 8\Big(\sin(\varphi)+\cos(\varphi) \Big) &=& \dfrac{2x\tan(\varphi)}{1+\tan^2(\varphi)} \\\\ & 4\Big(\sin(\varphi)+\cos(\varphi) \Big) &=& \dfrac{x\tan(\varphi)}{1+\tan^2(\varphi)} \quad | \quad \cos(\varphi) = \dfrac{1}{ \sqrt{1+\tan^2(\varphi)} } \\\\ & 4\left(\dfrac{1}{ \sqrt{1+\tan^2(\varphi)} } +\sin(\varphi) \right) &=& \dfrac{x\tan(\varphi)}{1+\tan^2(\varphi)} \quad | \quad \sin(\varphi) = -\dfrac{\tan(\varphi)}{ \sqrt{1+\tan^2(\varphi)} } \\\\ & 4\left(\dfrac{1}{ \sqrt{1+\tan^2(\varphi)} } -\dfrac{\tan(\varphi)}{ \sqrt{1+\tan^2(\varphi)} } \right) &=& \dfrac{x\tan(\varphi)}{1+\tan^2(\varphi)} \\\\ & \dfrac{ 4\Big( 1-\tan(\varphi) \Big) } { \sqrt{1+\tan^2(\varphi)} } &=& \dfrac{x\tan(\varphi)}{1+\tan^2(\varphi)} \\\\ & 4\Big( 1-\tan(\varphi) \Big) &=& \dfrac{x\tan(\varphi)\sqrt{1+\tan^2(\varphi)}}{1+\tan^2(\varphi)} \\\\ & 4\Big( 1-\tan(\varphi) \Big) &=& \dfrac{x\tan(\varphi)}{\sqrt{1+\tan^2(\varphi)}} \\\\ & \mathbf{x} &=& \mathbf{ \dfrac{4\sqrt{1+\tan^2(\varphi)}\Big( 1-\tan(\varphi) \Big) } {\tan(\varphi)} } \qquad (6)\\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (3)=(6): & x = \mathbf{\dfrac{9\sqrt{1+\tan^2(\varphi) }} { 1-\tan^2(\varphi)} } &=& \mathbf{ \dfrac{4\sqrt{1+\tan^2(\varphi)}\Big( 1-\tan(\varphi) \Big) } {\tan(\varphi)} } \\\\ & \dfrac{9} { 1-\tan^2(\varphi)} &=& \dfrac{4\Big( 1-\tan(\varphi) \Big) } {\tan(\varphi)} \\\\ & \dfrac{9}{4}*\tan(\varphi) &=& \Big( 1-\tan^2(\varphi)\Big) \Big( 1-\tan(\varphi) \Big) \\\\ & \dfrac{9}{4}*\tan(\varphi) &=& 1-\tan(\varphi) - \tan^2(\varphi)+\tan^3(\varphi) \\\\ & \ldots \\ & \mathbf{\tan^3(\varphi) -\tan^2(\varphi)+\dfrac{5}{4}*\tan(\varphi)+1} &=& \mathbf{0} \\ & \Rightarrow \varphi &=& \arctan(\dfrac{1}{2}) \\ &\mathbf{\varphi} &=& \mathbf{26.5650511771^\circ} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{x} &=& \mathbf{\dfrac{9\cos(\varphi) } {\cos(2\varphi)}} \\\\ x &=& \dfrac{9\cos(26.5650511771^\circ) } {\cos(2*26.5650511771^\circ)} \\\\ x &=& \dfrac{8.04984471900} {0.6} \\\\ \mathbf{x} &=& \mathbf{13.4164078650} \\ \hline \end{array}\)

 

laugh

26 июн. 2020 г.
 #3
avatar+26398 
+2
26 июн. 2020 г.
 #1
avatar+26398 
+3

calc- integration

\(\int \dfrac{1}{1-\sin(x)} \ dx\)

 

\(\begin{array}{|rclcrcl|} \hline && \mathbf{\int \dfrac{1}{1-\sin(x)} dx } \\\\ &=& \int \dfrac{1}{\Big(1-\sin(x)\Big)}*\dfrac{\Big(1+\sin(x)\Big)}{\Big(1+\sin(x)\Big)} dx \\\\ &=& \int \dfrac{1+\sin(x)}{1-\sin^2(x)} dx \quad | \quad 1-\sin^2(x)=\cos^2(x) \\\\ &=& \int \dfrac{1+\sin(x)}{ \cos^2(x)} dx \\\\ &=& \int \left( \dfrac{1}{ \cos^2(x)}+\dfrac{\sin(x)}{ \cos^2(x)}\right) dx \\\\ &=& \mathbf{\int \dfrac{1}{ \cos^2(x)} dx +\int \dfrac{\sin(x)}{ \cos^2(x)} dx } \\ \hline \end{array} \)

 

\(\begin{array}{|rclcrcl|} \hline && \mathbf{ \int \dfrac{1}{ \cos^2(x)} dx } \\\\ && \text{substitute:} & u&=& \tan(x) \\\\ && & u&=& \dfrac{\sin(x)}{\cos(x)} \\\\ && & du&=& \dfrac{\cos(x)\cos(x)-\sin(x)(-\sin(x)}{\cos^2(x)}\ dx \\\\ && & du&=& \dfrac{\cos^2(x)+\sin^2(x)}{\cos^2(x)} \ dx\\\\ && & du&=& \dfrac{1}{\cos^2(x)} \ dx \\\\ && & dx&=& \cos^2(x) \ du \\\\ &=& \int \dfrac{1}{ \cos^2(x)} \cos^2(x) \ du \\\\ &=& \int \ du \\\\ &=& u \\\\ \mathbf{ \int \dfrac{1}{ \cos^2(x)} dx }&=& \mathbf{ \tan(x) }+c \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{\int \dfrac{\sin(x)}{ \cos^2(x)} dx } \\\\ &=& -\int \dfrac{-\sin(x)}{ \cos^2(x)} dx \\\\ && \text{substitute:} & u&=& \cos(x) \\\\ && & du&=& -\sin(x) \ dx \\\\ &=& -\int \dfrac{1}{u^2} du \\\\ &=& -\int u^{-2} du \\\\ &=& - \dfrac{u^{-2+1}}{-2+1} \\\\ &=& - \dfrac{u^{-1}}{-1} \\\\ &=& u^{-1} \\\\ &=& \dfrac{1}{u} \\\\ \mathbf{\int \dfrac{\sin(x)}{ \cos^2(x)} dx }&=& \mathbf{ \dfrac{1}{\cos(x)} +c} \\ \hline \end{array} \)

 

\(\begin{array}{|rclcrcl|} \hline && \mathbf{\int \dfrac{1}{1-\sin(x)} dx } \\\\ &=& \mathbf{\int \dfrac{1}{ \cos^2(x)} dx +\int \dfrac{\sin(x)}{ \cos^2(x)} dx } \\\\ &=& \mathbf{\tan(x) + \dfrac{1}{\cos(x)} +c} \\ \hline \end{array}\)

 

laugh

25 июн. 2020 г.