heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
+2

Let a, b, c be vectors such that
\(\mathbf{a} \times \mathbf{b} = \begin{pmatrix} -1 \\- 1 \\ -1 \end{pmatrix},\ \mathbf{a} \times \mathbf{c} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix},\ \text{ and } \mathbf{b} \times \mathbf{c} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}\).


2.
Then evaluate

\((\mathbf{b} + \mathbf{c})\times \mathbf{b},\ \mathbf{a}\times(\mathbf{b} + 4 \mathbf{a}),\ (\mathbf{a} + \mathbf{b} + \mathbf{c})\times \mathbf{a}\)

 

\(\begin{array}{|l|rcll|} \hline \mathbf{1.} & (\mathbf{b} + \mathbf{c})\times \mathbf{b} \\ & &=& \mathbf{b}\times \mathbf{b} + \mathbf{c}\times \mathbf{b} \\ & &=& 0 + \mathbf{c}\times \mathbf{b} \\ & &=& - (\mathbf{b}\times \mathbf{c}) \\ & &=& - \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} \\ & &=& \begin{pmatrix} 0 \\ -2 \\ -3 \end{pmatrix} \\ \hline \mathbf{2.} & \mathbf{a}\times(\mathbf{b} + 4 \mathbf{a}) \\ & &=& \mathbf{a}\times \mathbf{b} + \mathbf{a}\times (4 \mathbf{a}) \\ & &=& \mathbf{a}\times \mathbf{b} + 4(\mathbf{a}\times \mathbf{a}) \\ & &=& \mathbf{a}\times \mathbf{b} + 4 * 0 \\ & &=& \mathbf{a}\times \mathbf{b} \\ & &=& \begin{pmatrix} -1 \\- 1 \\ -1 \end{pmatrix} \\ \hline \mathbf{3.} & (\mathbf{a} + \mathbf{b} + \mathbf{c})\times \mathbf{a} \\ & &=& \mathbf{a}\times \mathbf{a} + \mathbf{b}\times \mathbf{a} + \mathbf{c}\times \mathbf{a} \\ & &=& \mathbf{a}\times \mathbf{a} - \mathbf{a}\times \mathbf{b} - \mathbf{a}\times \mathbf{c} \\ & &=& 0 - (\mathbf{a}\times \mathbf{b}) - (\mathbf{a}\times \mathbf{c}) \\ & &=& - (\mathbf{a}\times \mathbf{b}) - (\mathbf{a}\times \mathbf{c}) \\ & &=& - \begin{pmatrix} -1 \\- 1 \\ -1 \end{pmatrix} - \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \\ & &=& \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \\ & &=& \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \\ \hline \end{array}\)

 

laugh

6 авг. 2019 г.
 #1
avatar+26398 
+2

Let a, b, c be vectors such that

\(\mathbf{a} \times \mathbf{b} = \begin{pmatrix} -1 \\- 1 \\ -1 \end{pmatrix},\ \mathbf{a} \times \mathbf{c} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix},\ \text{ and } \mathbf{b} \times \mathbf{c} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} \).
1.
Then evaluate

\((\mathbf{a} + \mathbf{b})\times \mathbf{c},\ \mathbf{a}\times(2\mathbf{b} -3 \mathbf{c}),\ (\mathbf{a} + 2 \mathbf{c})\times \mathbf{b}\)

 

\(\begin{array}{|l|rcll|} \hline \mathbf{1.} & (\mathbf{a} + \mathbf{b})\times \mathbf{c} \\ & &=& \mathbf{a}\times \mathbf{c} + \mathbf{b} \times \mathbf{c} \\ &&=& \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}+\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} \\ &&=& \begin{pmatrix} -1 \\ 4 \\ 4 \end{pmatrix} \\ \hline \mathbf{2.} & \mathbf{a}\times(2\mathbf{b} -3 \mathbf{c}) \\ & &=& \mathbf{a}\times(2\mathbf{b}) - \mathbf{a}\times (3 \mathbf{c}) \\ & &=& 2(\mathbf{a}\times\mathbf{b}) - 3(\mathbf{a}\times \mathbf{c}) \\ & &=& 2 \begin{pmatrix} -1 \\- 1 \\ -1 \end{pmatrix} - 3 \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} \\ & &=& \begin{pmatrix} -2 \\- 2 \\ -2 \end{pmatrix} - \begin{pmatrix} -3 \\ 6 \\ 3 \end{pmatrix} \\ & &=& \begin{pmatrix} 1 \\- 8 \\ -5 \end{pmatrix} \\ \hline \mathbf{3.} & (\mathbf{a} + 2 \mathbf{c})\times \mathbf{b} \\ & &=& \mathbf{a}\times \mathbf{b} + (2 \mathbf{c})\times \mathbf{b} \\ & &=& \mathbf{a}\times \mathbf{b} + 2 (\mathbf{c}\times \mathbf{b}) \\ & &=& \mathbf{a}\times \mathbf{b} - 2 (\mathbf{b}\times \mathbf{c}) \\ & &=& \begin{pmatrix} -1 \\- 1 \\ -1 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} \\ & &=& \begin{pmatrix} -1 \\- 5 \\ -7 \end{pmatrix} \\ \hline \end{array}\)

 

laugh

6 авг. 2019 г.
 #4
avatar+26398 
+2
6 авг. 2019 г.
 #2
avatar+26398 
+2

Let O and H be the circumcenter and orthocenter of triangle ABC, respectively.
Let a, b, and c denote the side lengths as in the picture below:

2.
Also, Find \(AH^2 + BH^2 + CH^2\) if the circumradius is equal to 7 and \(a^2 + b^2 + c^2 = 432\).

\(\begin{array}{|lrcll|} \hline (1) & \vec{OA} + \vec{AH} &=& \vec{OH} \\ (2) & \vec{OB} + \vec{BH} &=& \vec{OH} \\ (3) & \vec{OC} + \vec{CH} &=& \vec{OH} \\ \hline (1)+(2)+(3): & \underbrace{\vec{OA}+\vec{OB}+\vec{OC}}_{=\vec{OH}} +\vec{AH}+\vec{BH}+\vec{CH} &=& 3\vec{OH} \\ & \vec{OH} +\vec{AH}+\vec{BH}+\vec{CH} &=& 3\vec{OH} \\ & \mathbf{\vec{AH}+\vec{BH}+\vec{CH}} &=& \mathbf{2\vec{OH}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \left(\vec{AH}+\vec{BH}+\vec{CH}\right)^2 &=& 4\left(\vec{OH}\right)^2 \\ AH^2+BH^2+CH^2\\ +2\vec{AH}\vec{BH}\\ +2\vec{AH}\vec{CH}\\ +2\vec{BH}\vec{CH}&=& 4\left(\vec{OH}\right)^2 \\\\ && 2\vec{AH}\vec{BH} = 2AH*BH\ \cos(\angle AHB) & c^2 = AH^2+BH^2-2AH*BH\ \cos(\angle AHB) \\ &&& 2AH*BH\ \cos(\angle AHB)=AH^2+BH^2-c^2 \\ && \mathbf{2\vec{AH}\vec{BH} = AH^2+BH^2-c^2} \\\\ \\ && 2\vec{AH}\vec{CH} = 2AH*CH\ \cos(\angle AHC) & b^2 = AH^2+CH^2-2AH*CH\ \cos(\angle AHC) \\ &&& 2AH*CH\ \cos(\angle AHC)=AH^2+CH^2-b^2 \\ && \mathbf{2\vec{AH}\vec{CH} = AH^2+CH^2-b^2} \\\\ \\ && 2\vec{BH}\vec{CH} = 2BH*CH\ \cos(\angle BOC) & a^2 = BH^2+CH^2-2BH*CH\cos(\angle BOC) \\ &&& 2BH*CH\cos(\angle BOC)=BH^2+CH^2-a^2 \\ && \mathbf{2\vec{BH}\vec{CH} = BH^2+CH^2-a^2} \\\\ AH^2+BH^2+CH^2\\ +AH^2+BH^2-c^2\\ +AH^2+CH^2-b^2\\ +BH^2+CH^2-a^2 &=& 4\left(\vec{OH}\right)^2 \\ 3\left( AH^2+BH^2+CH^2\right)-\left(a^2+b^2+c^2\right) &=& 4\left(\vec{OH}\right)^2 \\ 3\left( AH^2+BH^2+CH^2\right) &=& 4\left(\vec{OH}\right)^2+\left(a^2+b^2+c^2\right) \\ 3\left( AH^2+BH^2+CH^2\right) &=& 4*9+432 \\ 3\left( AH^2+BH^2+CH^2\right) &=& 468 \quad | \quad :3 \\ \mathbf{AH^2+BH^2+CH^2} &=& \mathbf{156} \\ \hline \end{array}\)

 

laugh

5 авг. 2019 г.
 #3
avatar+26398 
+3
5 авг. 2019 г.