Let O and H be the circumcenter and orthocenter of triangle ABC, respectively.
Let a, b, and c denote the side lengths as in the picture below:

1.
Find OH if the circumradius is equal to 7 and a^2 + b^2 + c^2 = 432.
\(\text{Let circumradius $R=7$} \\ \text{Let $OA=OB=OC=R$}\)
\(\vec{OH}=\vec{OA}+\vec{OB}+\vec{OC} \quad \text{This is the Sylvester’s relation}\)
\(\begin{array}{|rcll|} \hline \left(\vec{OH}\right)^2 &=& \left(\vec{OA}+\vec{OB}+\vec{OC}\right)^2 \\ OH^2 &=& \underbrace{OA^2+OB^2+OC^2}_{=3R^2} +2\vec{OA}\vec{OB}+2\vec{OA}\vec{OC}+2\vec{OB}\vec{OC} \\ OH^2 &=& 3R^2 +2\vec{OA}\vec{OB}+2\vec{OA}\vec{OC}+2\vec{OB}\vec{OC} \\\\ && 2\vec{OA}\vec{OB} = 2R^2\ \cos(\angle AOB) & c^2 = 2R^2-2R^2\cos(\angle AOB) \\ &&& 2R^2\cos(\angle AOB)=2R^2-c^2 \\ && \mathbf{2\vec{OA}\vec{OB} = 2R^2-c^2} \\\\ && 2\vec{OA}\vec{OC} = 2R^2\ \cos(\angle AOC) & b^2 = 2R^2-2R^2\cos(\angle AOC) \\ &&& 2R^2\cos(\angle AOC)=2R^2-b^2 \\ && \mathbf{2\vec{OA}\vec{OC} = 2R^2-b^2} \\\\ && 2\vec{OB}\vec{OC} = 2R^2\ \cos(\angle BOC) & a^2 = 2R^2-2R^2\cos(\angle BOC) \\ &&& 2R^2\cos(\angle BOC)=2R^2-a^2 \\ && \mathbf{2\vec{OB}\vec{OC} = 2R^2-a^2} \\\\ OH^2 &=& 3R^2 +2R^2-c^2+2R^2-b^2+2R^2-a^2 \\\\ \mathbf{OH^2} &=& \mathbf{9R^2 -\left(a^2+b^2+c^2\right)} \\ \hline OH^2 &=& 9R^2 -\left(a^2+b^2+c^2\right) \quad | \quad R=7,\ a^2 + b^2 + c^2 = 432 \\ OH^2 &=& 9*7^2 -432 \\ OH^2 &=& 9 \\ \mathbf{OH} &=& \mathbf{3} \\ \hline \end{array}\)
