heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #3
avatar+26398 
+2
5 авг. 2019 г.
 #1
avatar+26398 
+4
5 авг. 2019 г.
 #1
avatar+26398 
+2

Let P be the intersection point of the line through points D = (1, 1, 2) and E = (2, 3, 4) 

with the plane through A = (0,1,1), B = (1,1,0) and C = (1,0,3).

What is P?

 

\(\begin{array}{|rcl|rclrcl|} \hline \text{plane} &&& \text{line} \\ \hline && A = \begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix} \qquad C = \begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix} \qquad & && D = \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix} \qquad E = \begin{pmatrix} 2\\ 3\\ 4 \end{pmatrix} \\ \vec{x} &=& \vec{B}+s(\vec{A}-\vec{B})+t(\vec{C}-\vec{B}) & \vec{x} &=& \vec{D}+r(\vec{E}-\vec{D}) \\\\ \vec{x} &=&\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix} +s\left(\begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix}-\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}\right) +t\left(\begin{pmatrix} 1\\ 0\\ 3 \end{pmatrix}-\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}\right) & \vec{x} &=& \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix} +r\left(\begin{pmatrix} 2\\ 3\\ 4 \end{pmatrix}-\begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}\right) \\\\ \vec{x} &=&\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}+s\begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}+t\begin{pmatrix} 0\\ -1\\ 3 \end{pmatrix} & \vec{x} &=& \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}+r\begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix}\\ \hline \end{array} \)

\(\begin{array}{|rcll|} \hline \vec{x} =\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}+s\begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}+t\begin{pmatrix} 0\\ -1\\ 3 \end{pmatrix} &=& \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}+r\begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} \\\\ \begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}+s\begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}+t\begin{pmatrix} 0\\ -1\\ 3 \end{pmatrix} &=&\begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}+r\begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} \\\\ s\begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}+t\begin{pmatrix} 0\\ -1\\ 3 \end{pmatrix} -r\begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} &=& \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}-\begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix} \\\\ \mathbf{ s\begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}+t\begin{pmatrix} 0\\ -1\\ 3 \end{pmatrix} -r\begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} } &=& \mathbf{ \begin{pmatrix} 0\\ 0\\ 2 \end{pmatrix} } \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (1) & -s-r &=& 0 \\ & \mathbf{r} &=& \mathbf{ -s} \\ \hline (2) & -t-2r &=& 0 \\ & t &=& -2r \\ & t &=& -2(-s) \\ & \mathbf{t} &=& \mathbf{2s} \\ \hline (3) & s+3t-2r &=& 2 \\ & s +3(2s)-2(-s) &=& 2 \\ & s+6s+2s &=& 2 \\ & 9s &=& 2 \\ & \mathbf{s} &=& \mathbf{\dfrac{2}{9}} \\\\ & t &=& 2s \\ & t &=& 2\left(\dfrac{2}{9}\right) \\ &\mathbf{t} &=& \mathbf{\dfrac{4}{9}} \\\\ & r &=& -s \\ & r &=& -\left(\dfrac{2}{9}\right)\\ &\mathbf{r} &=& \mathbf{- \dfrac{2}{9} } \\ \hline \end{array}\)

 

\(\mathbf{\vec{P}=\ ?}\)

\(\begin{array}{|rcll|} \hline \vec{x} &=& \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}+r\begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} \\\\ \vec{P} &=& \begin{pmatrix} 1\\ 1\\ 2 \end{pmatrix}- \dfrac{2}{9}\begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} \\\\ \vec{P} &=& \begin{pmatrix} 1-\dfrac{2}{9}\\ 1-\dfrac{4}{9}\\ 2-\dfrac{4}{9} \end{pmatrix} \\\\ \mathbf{\vec{P}} &=& \mathbf{\begin{pmatrix} \dfrac{7}{9}\\ \dfrac{5}{9}\\ \dfrac{14}{9} \end{pmatrix} } \\ \hline \end{array} \)

 

laugh

5 авг. 2019 г.
 #2
avatar+26398 
+1

math help

Consider parallelogram ABCD with points S and T chosen such that CS:SD = BT:TC = 2:1, as in the picture.
Let\( \vec{AB} = v\) and \(\vec{AD} = w\).
Then there exist constants r, s, t, u such that
\(\vec{AT} = r v + s w\),
\(\vec{BS} = t v + u w\).

 

2.

Also, what is\( \mathbf{\dfrac{AT^2+BS^2}{AC^2+BD^2}}\) equal to?

 

\(\begin{array}{|rcll|} \hline \left(\vec{AT}\right)^2 &=& \left(v +\dfrac{2}{3}w \right)^2 \\ \mathbf{\left(\vec{AT}\right)^2} &=& \mathbf{v^2+2\cdot \dfrac{2}{3}vw +\dfrac{4}{9}w^2 } \\\\ \left(\vec{BS}\right)^2 &=& \left(w -\dfrac{2}{3}v \right)^2 \\ \mathbf{\left(\vec{BS}\right)^2} &=& \mathbf{w^2 - 2\cdot \dfrac{2}{3}vw +\dfrac{4}{9}v^2 } \\\\ \left(\vec{AC}\right)^2 &=& \left(v+w \right)^2 \quad | \quad \vec{AC}=v+w \\ \mathbf{\left(\vec{AC}\right)^2} &=& \mathbf{v^2 + 2vw + w^2 } \\\\ \left(\vec{BD}\right)^2 &=& \left(w-v \right)^2 \quad | \quad \vec{BD}=w-v \\ \mathbf{\left(\vec{BD}\right)^2} &=& \mathbf{w^2 - 2vw + v^2 } \\ \hline \dfrac{AT^2+BS^2}{AC^2+BD^2} &=& \dfrac{v^2+2\cdot \dfrac{2}{3}vw +\dfrac{4}{9}w^2+w^2 - 2\cdot \dfrac{2}{3}vw +\dfrac{4}{9}v^2} {v^2 + 2vw + w^2+w^2 - 2vw + v^2} \\\\ \dfrac{AT^2+BS^2}{AC^2+BD^2} &=& \dfrac{v^2+\dfrac{4}{3}vw +\dfrac{4}{9}w^2+w^2 - \dfrac{4}{3}vw +\dfrac{4}{9}v^2} {v^2 + w^2+w^2 + v^2} \\\\ \dfrac{AT^2+BS^2}{AC^2+BD^2} &=& \dfrac{v^2 +\dfrac{4}{9}w^2+w^2 +\dfrac{4}{9}v^2} {v^2 + w^2+w^2 + v^2} \\\\ \dfrac{AT^2+BS^2}{AC^2+BD^2} &=& \dfrac{v^2 +\dfrac{4}{9}v^2+w^2 +\dfrac{4}{9}w^2} {2(v^2 + w^2)} \\\\ \dfrac{AT^2+BS^2}{AC^2+BD^2} &=& \dfrac{\dfrac{13}{9}(v^2+w^2)} {2(v^2 + w^2)} \\\\ \mathbf{\dfrac{AT^2+BS^2}{AC^2+BD^2}} &=& \mathbf{\dfrac{13}{18}} \\ \hline \end{array}\)

 

laugh

4 авг. 2019 г.
 #3
avatar+26398 
+2

3.

In triangle ABC, S is a point on side BC such that BS:SC = 1:2,
and T is a point on side AC such that AT:TC = 4:3.
Let U be the intersection of AS and BT.

 

We can also write \(\vec{U} = x \vec{A} + y \vec{B} + z \vec{C}\)
for some real values of x, y, z. Find x, y, z.

 

\(\begin{array}{|rcll|} \hline \vec{U}-\vec{C} &=& \dfrac{2}{3}\vec{v}+ \dfrac{US}{AS}\left( \vec{u}-\dfrac{2}{3}\vec{v} \right) \quad | \quad \vec{u} = \vec{A}-\vec{C},\ \vec{v} = \vec{B}-\vec{C} \\ \vec{U}-\vec{C} &=& \dfrac{2}{3}\left(\vec{B}-\vec{C}\right)+ \dfrac{US}{AS}\left( \vec{A}-\vec{C}-\dfrac{2}{3}\left(\vec{B}-\vec{C}\right)\right) \\ \vec{U}-\vec{C} &=& \dfrac{2}{3}\vec{B}-\dfrac{2}{3}\vec{C} + \dfrac{US}{AS}\left( \vec{A}-\vec{C}-\dfrac{2}{3}\vec{B}+\dfrac{2}{3}\vec{C}\right) \\ \vec{U}-\vec{C} &=& \dfrac{2}{3}\vec{B}-\dfrac{2}{3}\vec{C} + \dfrac{US}{AS}\left( \vec{A}-\dfrac{2}{3}\vec{B}-\dfrac{1}{3}\vec{C}\right) \quad | \quad \dfrac{US}{AS}=\dfrac{1}{5} \\ \vec{U}-\vec{C} &=& \dfrac{2}{3}\vec{B}-\dfrac{2}{3}\vec{C} + \dfrac{1}{5}\left( \vec{A}-\dfrac{2}{3}\vec{B}-\dfrac{1}{3}\vec{C}\right) \\ \vec{U}-\vec{C} &=& \dfrac{2}{3}\vec{B}-\dfrac{2}{3}\vec{C} + \dfrac{1}{5}\vec{A}-\dfrac{2}{15}\vec{B}-\dfrac{1}{15}\vec{C} \\ \vec{U} &=& \vec{C}+\dfrac{2}{3}\vec{B}-\dfrac{2}{3}\vec{C} + \dfrac{1}{5}\vec{A}-\dfrac{2}{15}\vec{B}-\dfrac{1}{15}\vec{C} \\ \vec{U} &=& \dfrac{1}{5}\vec{A} +\dfrac{8}{15}\vec{B}+\dfrac{4}{15}\vec{C} \quad |\quad \vec{U} = x \vec{A} + y \vec{B} + z \vec{C} \\ \hline \mathbf{x}&=& \mathbf{\dfrac{1}{5}} \\ \mathbf{y}&=& \mathbf{\dfrac{8}{15}} \\ \mathbf{z}&=& \mathbf{\dfrac{4}{15}} \\ \hline \end{array}\)

 

laugh

4 авг. 2019 г.