Potenz- und Winkelfunktionen

Wenn es sich um eine Extremwertaufgabe handelt, dann ist die Lösung folgende:
Mit Winkelfunktionen:
\(\begin{array}{|lrcll|} \hline (1)& \tan(\alpha) &=& \dfrac{x}{a} \\ \text{ oder } & x&=&a\tan(\alpha) \\ \hline (2)& \cos(\alpha) &=& \dfrac{a}{d} \\ \text{ oder } & d&=& \dfrac{a}{\cos(\alpha)} \\ \hline \end{array}\)
Ersetzen von x und d durch die Winkelfunktionen:
\(\begin{array}{|rcll|} \hline \mathbf{I} &=& \mathbf{\dfrac{x}{d^3}} \\ \hline I &=& \dfrac{a\tan(\alpha)}{\left( \dfrac{a}{\cos(\alpha)} \right)^3} \\\\ I &=& \dfrac{a\tan(\alpha)}{\left( \dfrac{a^3}{\cos^3(\alpha)}\right) } \\\\ I &=& \dfrac{a\tan(\alpha)\cos^3(\alpha)}{a^3} \\\\ I &=& \dfrac{ \tan(\alpha)\cos^3(\alpha)}{a^2} \\ \\ I &=& \dfrac{1}{a^2}\dfrac{ \sin(\alpha)\cos^3(\alpha)}{\cos(\alpha)} \\ \\ \mathbf{I} &=& \mathbf{\dfrac{1}{a^2} \sin(\alpha)\cos^2(\alpha) } \\ \hline \end{array} \)
\(\mathbf{ I_{\text{max}}=\ ? }\)
Die Ableitung nach \(\alpha\) wird 0 gesetzt:
\(\begin{array}{|rcll|} \hline \dfrac{d\ I}{d\ \alpha} &=& \dfrac{1}{a^2} \left[ \sin(\alpha)* 2 *\cos(\alpha)(-\sin(\alpha)) +\cos(\alpha)\cos^2(\alpha) \right] \\ \dfrac{d\ I}{d\ \alpha} &=& \dfrac{1}{a^2} \left[ \cos^3(\alpha)- 2\sin^2(\alpha)\cos(\alpha) \right] \\\\ && \boxed{\dfrac{d\ I}{d\ \alpha} = 0} \\\\ \dfrac{1}{a^2} \left[ \cos^3(\alpha)- 2\sin^2(\alpha)\cos(\alpha) \right] &=& 0 \quad | \quad *a^2\\ \cos^3(\alpha)- 2\sin^2(\alpha)\cos(\alpha)&=& 0 \\ \mathbf{\cos(\alpha) \left[\cos^2(\alpha)- 2\sin^2(\alpha) \right] }&=& \mathbf{0} \\ \underbrace{\cos(\alpha)}_{\neq 0,\ (\alpha \neq 90^\circ)} \left[\underbrace{\cos^2(\alpha)- 2\sin^2(\alpha)}_{=0} \right]&=& 0 \\\\ \cos^2(\alpha)- 2\sin^2(\alpha) &=& 0 \\ 2\sin^2(\alpha) &=& \cos^2(\alpha)\quad | \quad : \cos^2(\alpha) \\ \\ 2\tan^2(\alpha) &=& 1 \\ \tan^2(\alpha) &=& \dfrac{1}{2} \\ \tan (\alpha) &=& \dfrac{1}{\sqrt{2}} * \dfrac{\sqrt{2}}{\sqrt{2}} \\ \mathbf{\tan (\alpha)} &=& \mathbf{\dfrac{\sqrt{2}}{2}} \qquad (\alpha =35.2643896828\ldots ^\circ ) \\ \hline \end{array}\)
I hat ein Maximum an der Stelle \(x =a\tan(\alpha)\)
\(\begin{array}{|rcll|} \hline x &=& a\tan(\alpha) \\ x &=& 8\dfrac{\sqrt{2}}{2} \\ \mathbf{x} &=& \mathbf{4\sqrt{2}} \\ \hline \end{array}\)
I hat ein Maximum an der Stelle \(\mathbf{x=4\sqrt{2}}\)
