heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #3
avatar+26398 
+2
10 авг. 2019 г.
 #1
avatar+26398 
+2

This number \(15^5\) has a long sequence of positive consecutive numbers.
The arithmetic mean of 162nd, 163rd and 164th terms equals 10x, or 10 times, the first term.
What are the first term, last term and
the number of terms of this sequence?

 

\(\text{Let the first term $=a_1$ } \\ \text{Let the number of terms $=n$ } \\ \text{Let the last term $=a_n$ } \\ \text{Let $a_{163} = a_{162} + 1 $ } \\ \text{Let $a_{164} = a_{162} + 2 $ } \\ \text{Let the sum of the sequence $ 15^5=a_1+a_2+\ldots +a_{n-1}+a_n $ }\)

 

\(\mathbf{a_1=\ ?}\)

\(\begin{array}{|rcll|} \hline \dfrac{a_{162}+a_{163}+a_{164}} {3} &=& 10a_1 \\ \dfrac{a_{162}+(a_{162} + 1)+(a_{162} + 2)} {3} &=& 10a_1 \\ \dfrac{3a_{162}+3} {3} &=& 10a_1 \\ a_{162}+1 &=& 10a_1 \\ && \mathbf{a_n = a_1+(n-1)d} \quad | \quad d = 1 \\ && \boxed{a_n = a_1+ n-1} \\ && a_{162} = a_1+162-1 \\ && \mathbf{a_{162} = a_1 +161} \\ a_{162}+1 &=& 10a_1 \\ (a_1 +161)+1 &=& 10a_1 \\ a_1 +162 &=& 10a_1 \\ 9a_1 &=& 162 \\ \mathbf{a_1} &=& \mathbf{18} \\ \hline \end{array} \)

 

\(\mathbf{n=\ ?}\)

\(\begin{array}{|rcll|} \hline 15^5 &=& a_1+a_2+\ldots a_{n-1}+a_n \\ 15^5 &=& a_1+(a_1+1)+(a_1+2)+\ldots +(~a_1+(n-2)~)+(~a_1+(n-1)~) \\ 15^5 &=& na_1+\dfrac{\Big(1+(n-1)\Big)}{2}(n-1) \\ 15^5 &=& na_1+\dfrac{ n(n-1) }{2} \quad | \quad \cdot 2 \\ 2\cdot15^5 &=& 2na_1+ n(n-1) \\ \mathbf{2na_1+ n(n-1)} &=& \mathbf{2\cdot15^5} \quad | \quad a_1 = 18 \\ 2\cdot 18n+ n^2-n &=& 2\cdot15^5 \\ n^2 + 35 n -2\cdot 15^5 &=& 0 \\\\ n &=& \dfrac{-35\pm \sqrt{35^2-4\cdot(-2\cdot 15^5)}} {2} \\ n &=& \dfrac{-35\pm \sqrt{35^2+8\cdot 15^5)}} {2} \\ n &=& \dfrac{-35\pm \sqrt{1225+6075000)}} {2} \\ n &=& \dfrac{-35\pm \sqrt{6076225 }} {2} \\ n &=& \dfrac{-35\pm 2465} {2} \quad | \quad n>0!\\\\ n &=& \dfrac{-35+ 2465} {2} \\ \mathbf{ n} &=& \mathbf{1215} \\ \hline \end{array}\)

 

\(\mathbf{a_n=\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{a_n} &=& \mathbf{a_1+n-1} \\ a_n &=& 18+1215-1 \\ \mathbf{ a_n} &=& \mathbf{1232} \\ \hline \end{array}\)

 

\(\mathbf{check:}\)

\(\begin{array}{|rcll|} \hline 15^5 &=& 18 + 19 +20 + \ldots +1231+1232 \\ 15^5 &=& \dfrac{(18+1232)}{2}\cdot 1215 \\ 15^5 &=& \dfrac{1250}{2}\cdot 1215 \\ 15^5 &=& 625\cdot 1215 \\ 759375&=& 759375\ \checkmark \\ \hline a_{162} &=& 18 + 162-1 \\ a_{162} &=& 179 \\\\ \dfrac{179+180+181}{3} &=& 10 \cdot 18 \\ \dfrac{540}{3} &=& 180 \\ 180 &=& 180\ \checkmark \\ \hline \end{array}\)

 

laugh

10 авг. 2019 г.
 #4
avatar+26398 
+1
7 авг. 2019 г.
 #3
avatar+26398 
+4

Potenz- und Winkelfunktionen

 

Mit Wurzelfunktionen:

\(\begin{array}{|rcll|} \hline d^2 &=& a^2+x^2 \quad | \quad (\text{nehme beide Seiten hoch } \dfrac{3}{2}) \\ \Big(d^2\Big)^{\dfrac{3}{2}} &=& \Big(a^2+x^2\Big)^{\dfrac{3}{2}} \\ \Big(d \Big)^{2\dfrac{3}{2}} &=& \Big(a^2+x^2\Big)^{\dfrac{3}{2}} \\ \mathbf{ d^3 } &=& \mathbf{\Big(a^2+x^2\Big)^{\dfrac{3}{2}} } \\ \hline \end{array} \)

 

Ersetzen von d durch die Wurzelfunktion:

\(\begin{array}{|rcll|} \hline \mathbf{I} &=& \mathbf{\dfrac{x}{d^3}} \\ \hline I &=& \dfrac{x}{\Big(a^2+x^2\Big)^{\dfrac{3}{2}}} \\\\ \mathbf{I} &=& \mathbf{x\Big(a^2+x^2\Big)^{-\dfrac{3}{2}} } \\ \hline \end{array}\)

 

\(\mathbf{ I_{\text{max}}=\ ? }\)
Die Ableitung nach x wird 0 gesetzt:

\(\begin{array}{|rcll|} \hline \dfrac{d\ I}{d\ x} &=& 1*\Big(a^2+x^2\Big)^{-\dfrac{3}{2}}+x\left(-\dfrac{3}{2}\right)\Big(a^2+x^2\Big)^{-\dfrac{3}{2}-1}*2x \\ \dfrac{d\ I}{d\ x} &=& \Big(a^2+x^2\Big)^{-\dfrac{3}{2}}-3x^2\Big(a^2+x^2\Big)^{-\dfrac{3}{2}-1} \\ \dfrac{d\ I}{d\ x} &=& \Big(a^2+x^2\Big)^{-\dfrac{3}{2}} -3x^2\Big(a^2+x^2\Big)^{-\dfrac{3}{2}}\Big(a^2+x^2\Big)^{-1} \\\\ && \boxed{\dfrac{d\ I}{d\ \alpha} = 0} \\\\ 0 &=& \Big(a^2+x^2\Big)^{-\dfrac{3}{2}} -3x^2\Big(a^2+x^2\Big)^{-\dfrac{3}{2}}\Big(a^2+x^2\Big)^{-1} \\ 3x^2\Big(a^2+x^2\Big)^{-\dfrac{3}{2}}\Big(a^2+x^2\Big)^{-1} &=& \Big(a^2+x^2\Big)^{-\dfrac{3}{2}} \quad | \quad : \Big(a^2+x^2\Big)^{-\dfrac{3}{2}} \\ 3x^2 \Big(a^2+x^2\Big)^{-1} &=& 1 \quad | \quad * \Big(a^2+x^2\Big)^{1} \\ 3x^2 &=& \Big(a^2+x^2\Big)^{1} \\ 3x^2 &=& a^2+x^2 \quad | \quad - x^2 \\ 2x^2 &=& a^2 \quad | \quad (\text{auf beiden Seiten die Wurzel ziehen}) \\ \sqrt{2}x &=& a \quad | \quad * \sqrt{2} \\ 2x &=& a\sqrt{2} \quad | \quad : 2 \\ x &=& a\dfrac{\sqrt{2}} {2} \quad | \quad a = 8 \\ x &=& 8\dfrac{\sqrt{2}} {2} \\ \mathbf{x} &=& \mathbf{4 \sqrt{2}} \\ \hline \end{array}\)

 

I hat ein Maximum an der Stelle  \(\mathbf{4\sqrt{2}}\)

 

laugh

7 авг. 2019 г.
 #1
avatar+26398 
+4

Potenz- und Winkelfunktionen


Wenn es sich um eine Extremwertaufgabe handelt, dann ist die Lösung  folgende:


Mit Winkelfunktionen:

\(\begin{array}{|lrcll|} \hline (1)& \tan(\alpha) &=& \dfrac{x}{a} \\ \text{ oder } & x&=&a\tan(\alpha) \\ \hline (2)& \cos(\alpha) &=& \dfrac{a}{d} \\ \text{ oder } & d&=& \dfrac{a}{\cos(\alpha)} \\ \hline \end{array}\)

 

Ersetzen von x und d durch die Winkelfunktionen:

\(\begin{array}{|rcll|} \hline \mathbf{I} &=& \mathbf{\dfrac{x}{d^3}} \\ \hline I &=& \dfrac{a\tan(\alpha)}{\left( \dfrac{a}{\cos(\alpha)} \right)^3} \\\\ I &=& \dfrac{a\tan(\alpha)}{\left( \dfrac{a^3}{\cos^3(\alpha)}\right) } \\\\ I &=& \dfrac{a\tan(\alpha)\cos^3(\alpha)}{a^3} \\\\ I &=& \dfrac{ \tan(\alpha)\cos^3(\alpha)}{a^2} \\ \\ I &=& \dfrac{1}{a^2}\dfrac{ \sin(\alpha)\cos^3(\alpha)}{\cos(\alpha)} \\ \\ \mathbf{I} &=& \mathbf{\dfrac{1}{a^2} \sin(\alpha)\cos^2(\alpha) } \\ \hline \end{array} \)

 

\(\mathbf{ I_{\text{max}}=\ ? }\)

Die Ableitung nach \(\alpha\) wird 0 gesetzt:

\(\begin{array}{|rcll|} \hline \dfrac{d\ I}{d\ \alpha} &=& \dfrac{1}{a^2} \left[ \sin(\alpha)* 2 *\cos(\alpha)(-\sin(\alpha)) +\cos(\alpha)\cos^2(\alpha) \right] \\ \dfrac{d\ I}{d\ \alpha} &=& \dfrac{1}{a^2} \left[ \cos^3(\alpha)- 2\sin^2(\alpha)\cos(\alpha) \right] \\\\ && \boxed{\dfrac{d\ I}{d\ \alpha} = 0} \\\\ \dfrac{1}{a^2} \left[ \cos^3(\alpha)- 2\sin^2(\alpha)\cos(\alpha) \right] &=& 0 \quad | \quad *a^2\\ \cos^3(\alpha)- 2\sin^2(\alpha)\cos(\alpha)&=& 0 \\ \mathbf{\cos(\alpha) \left[\cos^2(\alpha)- 2\sin^2(\alpha) \right] }&=& \mathbf{0} \\ \underbrace{\cos(\alpha)}_{\neq 0,\ (\alpha \neq 90^\circ)} \left[\underbrace{\cos^2(\alpha)- 2\sin^2(\alpha)}_{=0} \right]&=& 0 \\\\ \cos^2(\alpha)- 2\sin^2(\alpha) &=& 0 \\ 2\sin^2(\alpha) &=& \cos^2(\alpha)\quad | \quad : \cos^2(\alpha) \\ \\ 2\tan^2(\alpha) &=& 1 \\ \tan^2(\alpha) &=& \dfrac{1}{2} \\ \tan (\alpha) &=& \dfrac{1}{\sqrt{2}} * \dfrac{\sqrt{2}}{\sqrt{2}} \\ \mathbf{\tan (\alpha)} &=& \mathbf{\dfrac{\sqrt{2}}{2}} \qquad (\alpha =35.2643896828\ldots ^\circ ) \\ \hline \end{array}\)

 

I hat ein Maximum an der Stelle \(x =a\tan(\alpha)\)

\(\begin{array}{|rcll|} \hline x &=& a\tan(\alpha) \\ x &=& 8\dfrac{\sqrt{2}}{2} \\ \mathbf{x} &=& \mathbf{4\sqrt{2}} \\ \hline \end{array}\)

 

I hat ein Maximum an der Stelle  \(\mathbf{x=4\sqrt{2}}\)

 

laugh

7 авг. 2019 г.