heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
+1

This number \(65^4\) has a long sequence of positive consecutive 4-digit integers.
The first term, the 3001st term and the last term are all 4-digit prime numbers.
What is the first term, the last term and the number of terms of this sequence?

 

\(\text{$a_1$ is a prime number hence odd } \\ \text{$a_n$ is a prime number hence odd } \)

 

\(\begin{array}{|rcll|} \hline && a_n = a_1+(n-1) \\ &or& n = a_n-a_1+1 \qquad \text{$a_n$ is odd and $a_1$ is odd hence $n$ is odd} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline 65^4 &=& a_1 + (a_1+1)+ (a_1+2) + \ldots + \Big(a_1+(n-1) \Big) \\ 65^4 &=& na_1 + \dfrac{ \Big(1+(n-1)\Big)}{2} (n-1 ) \\ 65^4 &=& na_1 + \dfrac{n(n-1)}{2} \\ 65^4 &=& n\left( a_1 + \dfrac{n-1}{2}\right) \\ 65^4 &=& n\left( \dfrac{2a_1+n-1}{2}\right) \quad | \quad n = a_n-a_1+1 \\ 65^4 &=& (a_n-a_1+1)\left( \dfrac{2a_1+a_n-a_1+1-1}{2}\right) \\ \mathbf{65^4} &=& \mathbf{(a_n-a_1+1)\left( \dfrac{ a_1+a_n }{2}\right)} \quad | \quad \text{$a_1+a_n$ is even! $\quad a_n-a_1+1=n$ is odd!} \\ \mathbf{65^4} &=& \mathbf{x\times y} \\ && \boxed{x = a_n-a_1+1},\ \boxed{y = \left( \dfrac{ a_1+a_n }{2}\right)} \quad \text{$x$ and $y$ are divisors of $65^4$ } \\\\ \hline x &=& a_n-a_1+1 \quad \text{ or } \\ \mathbf{ a_n } &=& \mathbf{x+p-1} \\\\ y &=& \left( \dfrac{ a_1+a_n }{2}\right) \\ y &=& \left( \dfrac{ a_1+x+p-1 }{2}\right)\quad \text{ or } \\ \mathbf{a_1} &=& \mathbf{y-\dfrac{x-1}{2}} \\ \hline \end{array}\)

 

The Divisors of \(65^4\) are:

\(\text{1 | 5 | 13 | 25 | 65 | 125 | 169 | 325 | 625 | 845 | 1625 | 2197 | 4225|$\\$ | 8125 | 10985 | 21125 | 28561 | 54925 | 105625 | 142805 | 274625 |$\\$ |714025 | 1373125 | 3570125 | 17850625 (25 divisors)}\)

 

\(\begin{array}{|rr|cc|cc|c|} \hline & & & \text{prime} &&\text{prime} \\ x & y & a_1 = y-\dfrac{x-1}{2} & \text{number} & a_n = x+a_1-1 & \text{number} & n =a_n-a_1+1 \\ \hline 1 & 17850625 & a_1 > 9999 \\ 5 & 3570125 & a_1 > 9999 \\ 13 &1373125 & a_1 > 9999 \\ 25 & 714025 & a_1 > 9999 \\ 65 & 274625 & a_1 > 9999 \\ 125 & 142805 & a_1 > 9999 \\ 169 & 105625 & a_1 > 9999 \\ 325 & 54925 & a_1 > 9999 \\ 625 & 28561 & a_1 > 9999 \\ 845 & 21125 & a_1 > 9999 \\ 1625 & 21125 & a_1 > 9999 \\ 2197 & 10985 & a_1=7027 & \text{yes} & a_n= 9223 & \text{no} \\ 4225 &4225& \color{red}a_1 = 2113 & \text{yes} & \color{red}a_n= 6337 & \text{yes} & \color{red}n= 4225 \\ \hline \end{array}\)

 

Here is only one solution so \(a_{3001} \)must be a prime number. \((a_{3001}=a_1+3000 = 2113+3000=5113\text{ prime number})\)

\(a_{3001} \) is irrelevant for the calculation!

 

laugh

14 авг. 2019 г.
 #2
avatar+26398 
+2

Sequence problem
The sequence \(\{a_n\}\) is defined by
\(a_0 = 1,a_1 = 1, \text{ and } a_n = a_{n - 1} + \dfrac {a_{n - 1}^2}{a_{n - 2}}\text{ for }n\ge2\).

The sequence \{b_n\} is defined by
\(b_0 = 1,b_1 = 3, \text{ and } b_n = b_{n - 1} + \dfrac {b_{n - 1}^2}{b_{n - 2}}\text{ for }n\ge2\).

Find \(\dfrac {b_{32}}{a_{32}}\).

 

\(\begin{array}{|rcll|} \hline a_n &=& a_{n - 1} + \dfrac { a_{n - 1}^2 } { a_{n - 2} } \\ \mathbf{ a_n } &=& \mathbf{ a_{n - 1} \left( 1 + \dfrac{a_{n-1}}{a_{n-2}} \right) } \\ \hline a_0 &=& 1 \text{ or } a_0 = 0! \\ a_1 &=& 1 \text{ or } a_1 = 1! \\ \hline a_2 &=& 1!\left(1+\dfrac{1}{1}\right) \\ &=& 1!\cdot 2 \\ &=& \mathbf{2!} \\\\ a_3 &=& 2!\left(1+\dfrac{1!\cdot 2}{1!}\right) \\ &=& 2!\cdot 3 \\ &=& \mathbf{3!} \\\\ a_4 &=& 3!\left(1+\dfrac{2!\cdot 3}{2!}\right) \\ &=& 3!\cdot 4 \\ &=& \mathbf{4!} \\\\ a_5 &=& 4!\left(1+\dfrac{3!\cdot 4}{3!}\right) \\ &=& 4!\cdot 5 \\ &=& \mathbf{5!} \\ \ldots \\ \mathbf{a_n} &=& \mathbf{n!} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline b_n &=& b_{n-1} + \dfrac{ b_{n-1}^2 } { b_{n-2} } \\ \mathbf{ b_n } &=& \mathbf{ b_{n-1} \left( 1 + \dfrac{b_{n-1}}{b_{n-2}} \right) } \\ \hline b_0 &=& 1 \text{ or } b_0 = \dfrac{2!}{2!} \\ b_1 &=& 3 \text{ or } b_1 = \dfrac{3!}{2!} \\ \hline b_2 &=& 3\left(1+\dfrac{3}{1}\right) \\ &=& 3\cdot 4 \\\\ b_3 &=& 3\cdot 4\left(1+\dfrac{\not{3}\cdot 4}{\not{3}}\right) \\ &=& 3\cdot 4\cdot 5 \\\\ b_4 &=& 3\cdot 4\cdot 5\left(1+\dfrac{\not{3}\cdot \not{4}\cdot 5}{\not{3}\cdot\not{4}}\right) \\ &=& 3\cdot 4\cdot 5\cdot 6 \\\\ b_5 &=& 3\cdot 4\cdot 5\cdot 6\left(1+\dfrac{\not{3}\cdot \not{4}\cdot \not{5}\cdot 6}{\not{3}\cdot\not{4}\cdot \not{5}}\right) \\ &=& 3\cdot 4\cdot 5\cdot 6\cdot 7 \\ \ldots \\ \mathbf{b_n} &=& \mathbf{\dfrac{(n+2)!}{2!} } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{b_n}{a_n} &=& \dfrac{\dfrac{(n+2)!}{2!}} {n!} \\\\ &=& \dfrac{ (n+2)! } {2!n!} \\\\ &=& \dfrac{ n!(n+1)(n+2) } {2!n!} \\\\ &=& \dfrac{ (n+1)(n+2) } {2!} \\\\ \mathbf{ \dfrac{b_n}{a_n} } &=& \mathbf{ \dfrac{(n+1)(n+2)} {2}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{b_{32}}{a_{32}} &=& \dfrac{(32+1)(32+2)} {2} \\\\ &=& \dfrac{33\cdot 34}{2} \\\\ &=& 33\cdot 17 \\\\ \mathbf{ \dfrac{b_{32}} {a_{32}} } &=&\mathbf{561} \\ \hline \end{array} \)

 

laugh

12 авг. 2019 г.