heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
+4

Given that \(A_k = \dfrac {k(k - 1)}2\cos\left( \dfrac {k(k - 1)\pi}2 \right)\),
find \(A_{19} + A_{20} + \cdots + A_{98}\).

 

\(\begin{array}{|rcll|} \hline &&\mathbf{ A_{19} + A_{20} + \cdots + A_{98}} \quad | \quad \small{98-18 = 80 \text{ terms}} \\\\ &=& \sum \limits_{k=19}^{98} \dfrac {k(k - 1)}2\cos\left( \dfrac {k(k - 1)\pi}2 \right) \\\\ &=&\dfrac{1}{2} \sum \limits_{k=19}^{98} k(k - 1)\cos\left( \dfrac {k(k - 1)\pi}2 \right) \\\\ &=&\dfrac{1}{2} \sum \limits_{k=19}^{98} k(k - 1)\cos(n\pi) \quad | \quad n = \dfrac{k(k - 1)}2 \\ && \boxed{\cos(n\pi)=\cos^n(\pi)\quad | \quad \cos(\pi) = -1 \\\cos(n\pi) = (-1)^{n} } \\ &=&\dfrac{1}{2} \sum \limits_{k=19}^{98} k(k - 1)(-1)^{n} \\\\ &=&\mathbf{\dfrac{1}{2} \sum \limits_{k=19}^{98} k(k - 1)(-1)^{\left(\dfrac{k(k - 1)}2\right)} } \\ \hline &=& \small{\dfrac{1}{2}\Big( -18\cdot 19+19\cdot 20+20\cdot 21-21\cdot 22-22\cdot 23+23\cdot 24+24\cdot 25-25\cdot 26 +- \ldots } \\ && \small{-94\cdot 95+95\cdot 96 + 96\cdot 97-97\cdot 98 \Big)} \quad | \quad \small{80 \text{ terms}} \\ &=& \small{\dfrac{1}{2}\Big( 19(-18+20)+21(20-22)+23(-22+24)+25(24-26) + \ldots }\\ && \small{+95(-94+96) +97(96-98)\Big)} \quad | \quad \small{40 \text{ terms}} \\ &=& \small{\dfrac{1}{2}\Big( 2\cdot 19 -2\cdot 21+2\cdot 23-2\cdot 25 +- \ldots +2\cdot 95 -2\cdot 97 \Big)} \quad | \quad \small{40 \text{ terms}} \\ &=& \small{\dfrac{2}{2}( 19 - 21+ 23- 25 +- \ldots + 95 - 97 )} \quad | \quad \small{40 \text{ terms}} \\ &=& \underbrace{ \underbrace{19-21}_{=-2} + \underbrace{23-25}_{=-2} + \underbrace{27-29}_{=-2} +- \ldots + \underbrace{91-93}_{=-2} + \underbrace{95-97}_{=-2}}_{ 20 \text{ terms} } \\ &=& -2\cdot 20 \\ &=& \mathbf{-40} \\ \hline \end{array}\)

 

laugh

20 авг. 2019 г.
 #1
avatar+26398 
+2

SOLVE SECOND ORDER INITIAL VALUE PROBLEM.
\(y'' +6y' +5y = 0 ,\ y(0)=1 \text{ and } y' (0) = 1\)

 

\(\text{Let $y=e^{rx}$} \\ \text{Let $y'=re^{rx}$} \\ \text{Let $y''=r^2e^{rx}$} \)

 

\(\begin{array}{|rcll|} \hline \mathbf{y'' +6y' +5y} &=& \mathbf{0} \\\\ r^2e^{rx} +6re^{rx} +5e^{rx} &=& 0 \\ \underbrace{e^{rx}}_{\neq 0}\cdot \underbrace{ \left(r^2 +6r +5\right) }_{=0} &=& 0 \\ && \begin{array}{|rcll|} \hline r^2 +6r +5 &=& 0 \\ r &=& \dfrac{-6\pm \sqrt{36-4\cdot 5}}{2} \\ r &=& \dfrac{-6\pm \sqrt{16}}{2} \\ r &=& \dfrac{-6\pm 4}{2} \\\\ r_1 &=& \frac{-6+4}{2} \\ \mathbf{r_1} &=& \mathbf{-1} \\\\ r_2 &=& \frac{-6-4}{2} \\ \mathbf{r_2} &=& \mathbf{-5} \\ \\ \hline \end{array} \\\\ y &=& c_1\cdot e^{r_1\cdot x} + c_2\cdot e^{r_2\cdot x} \\ \mathbf{y} &=& \mathbf{c_1\cdot e^{-1\cdot x} + c_2\cdot e^{-5\cdot x} } & (1) \\ \mathbf{y'} &=& \mathbf{-c_1\cdot e^{-1\cdot x} -5\cdot c_2\cdot e^{-5\cdot x} } & (2) \\ \hline y &=& c_1\cdot e^{-x} + c_2\cdot e^{-5\cdot x} \quad | \quad y(0)=1,\ x=0,\ y=1\\ 1 &=& c_1\cdot e^{-0} + c_2\cdot e^{-5\cdot 0} \\ \mathbf{1} &=& \mathbf{c_1 + c_2} & (3) \\\\ y' &=& -c_1\cdot e^{-x} -5\cdot c_2\cdot e^{-5\cdot x} \quad | \quad y'(0)=1, \ x=0,\ y'=1\\ 1 &=& -c_1\cdot e^{-0} -5\cdot c_2\cdot e^{-5\cdot 0} \\ \mathbf{1} &=& \mathbf{-c_1 - 5c_2} & (4) \\\\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (3) & \mathbf{1} &=& \mathbf{c_1 + c_2} \\ (4) & \mathbf{1} &=& \mathbf{-c_1 - 5c_2} \\ \hline (3)+(4): & 1+1 &=& c_1 + c_2+-c_1 - 5c_2 \\ & 2 &=& c_2 - 5c_2 \\ &-4c_2 &=& 2 \quad | \quad :(-4) \\ & \mathbf{c_2} &=& \mathbf{-\dfrac{1}{2}} \\\\ & 1 &=& c_1 + c_2 \\ & 1 &=& c_1 -\dfrac{1}{2}\\ & c_1 &=& 1+\dfrac{1}{2} \\ & \mathbf{c_1} &=& \mathbf{ \dfrac{3}{2}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{y} &=& \mathbf{ c_1\cdot e^{-1\cdot x} + c_2\cdot e^{-5\cdot x} } \\ \mathbf{y} &=& \mathbf{ \dfrac{3}{2}\cdot e^{-x} -\dfrac{1}{2}\cdot e^{-5\cdot x} } \\ \hline \end{array}\)

 

laugh

19 авг. 2019 г.
 #4
avatar+26398 
+2
19 авг. 2019 г.
 #1
avatar+26398 
+3

Simplify
\(\left( \dfrac{3 + i \sqrt{3}}{2} \right)^8 + \left( \dfrac{3 - i \sqrt{3}}{2} \right)^8\)( \(i\) is imaginary)

 

\(\text{Let $z = \dfrac{3 + i \sqrt{3}}{2}$} \\ \text{Let $\overline{z} = \dfrac{3 - i \sqrt{3}}{2}$} \)

 

\(\begin{array}{|rcll|} \hline z\cdot \overline{z} &=& \left(\dfrac{3}{2}\right)^2 +\left( \dfrac{\sqrt{3}}{2} \right)^2 \\ &=& \dfrac{9}{4} + \dfrac{3}{4} \\ \mathbf{z\cdot \overline{z}} &=& \mathbf{3} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \left(z+\overline{z} \right) &=& \dfrac{3}{2} + \dfrac{i \sqrt{3}}{2}+ \dfrac{3}{2} - \dfrac{i \sqrt{3}}{2} \\ &=& 2\cdot \dfrac{3}{2} \\ \mathbf{\left(z+\overline{z} \right)} &=& \mathbf{3} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \left(z+\overline{z} \right)^2 = 3^2 &=& z^2+2\cdot z\cdot \overline{z} + \overline{z}^2 \\ 3^2 &=& z^2 + \overline{z}^2 +2\cdot 3 \\ z^2 + \overline{z}^2 &=& 9-6 \\ \mathbf{z^2 + \overline{z}^2} &=& \mathbf{3} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \left(z^2+\overline{z}^2 \right)^2 = 3^2 &=& z^4+2\cdot z^2\cdot \overline{z}^2 + \overline{z}^4 \\ 9 &=& z^4+ \overline{z}^4 + 2\cdot \left(z\cdot \overline{z}\right)^2 \\ 9 &=& z^4+ \overline{z}^4 + 2\cdot 3^2 \\ z^4 + \overline{z}^4 &=& 9-18 \\ \mathbf{z^4 + \overline{z}^4} &=& \mathbf{-9} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \left(z^4+\overline{z}^4 \right)^2 = (-9)^2 &=& z^8+2\cdot z^4\cdot \overline{z}^4 + \overline{z}^8 \\ 81 &=& z^8+ \overline{z}^8 + 2\cdot \left(z\cdot \overline{z}\right)^4 \\ 81 &=& z^8+ \overline{z}^8 + 2\cdot 3^4 \\ z^8 + \overline{z}^8 &=& 81-2\cdot 81 \\ \mathbf{z^8 + \overline{z}^8} &=& \mathbf{-81} \\ \hline \end{array} \)

 

\(\left( \dfrac{3 + i \sqrt{3}}{2} \right)^8 + \left( \dfrac{3 - i \sqrt{3}}{2} \right)^8 = \mathbf{z^8 + \overline{z}^8} = \mathbf{-81} \)

 

laugh

18 авг. 2019 г.
 #2
avatar+26398 
+2

Calculate a normal vector n to the plane through the points
triple A = (1,-2,1), B = (-3,1,4), C = (1,1,2), as in the picture below,
such that if
\(\mathbf{n} = \begin{pmatrix}n_1 \\ n_2 \\ n_3 \end{pmatrix}\),
and \(n_1 + n_2 + n_3 = 7\).

\(\text{Let $\vec{v} = \vec{B} - \vec{C}$ } \\ \text{Let $\vec{w} = \vec{A} - \vec{C}$ }\)

 

\(\begin{array}{|rcll|} \hline \vec{v} &=& \begin{pmatrix}-3 \\ 1 \\ 4 \end{pmatrix} - \begin{pmatrix}1 \\1\\ 2\end{pmatrix} \\ \mathbf{\vec{v}} &=& \begin{pmatrix}\mathbf{-4} \\ \mathbf{0} \\ \mathbf{2} \end{pmatrix} \\\\ \vec{w} &=& \begin{pmatrix}1 \\ -2 \\ 1 \end{pmatrix} - \begin{pmatrix}1 \\1\\ 2\end{pmatrix} \\ \mathbf{\vec{w}} &=& \begin{pmatrix}\mathbf{0} \\ \mathbf{-3} \\ \mathbf{-1} \end{pmatrix} \\ \hline \end{array}\)

 

1.

Vector cross product

\(\small{ \begin{array}{|lrcll|} \hline & \vec{n} =\begin{pmatrix}n_1 \\ n_2 \\ n_3 \end{pmatrix}&=& \vec{v} \times \vec{w} \\\\ & &=& \begin{pmatrix}\mathbf{-4} \\ \mathbf{0} \\ \mathbf{2} \end{pmatrix} \times \begin{pmatrix}\mathbf{0} \\ \mathbf{-3} \\ \mathbf{-1} \end{pmatrix} \\\\ & &=& \begin{vmatrix}1&1&1 \\ -4&0&2 \\ 0&-3&-1 \end{vmatrix} \\\\ & &=& \begin{pmatrix} 6 \\ -4 \\ 12 \end{pmatrix} \\ \hline n_1+n_2+n_3: & 6-4+12 &=& 14 \quad | \quad \cdot \dfrac{7}{14} \\\\ & 6\cdot\dfrac{7}{14}-4\cdot\dfrac{7}{14}+12\cdot\dfrac{7}{14} &=& 14\cdot\dfrac{7}{14} \\\\ &\mathbf{ 3-2+6 }&=& \mathbf{7} \\\\ & \vec{n} &=& \begin{pmatrix}\mathbf{3} \\ \mathbf{-2} \\ \mathbf{6} \end{pmatrix} \\ \hline \end{array} }\)

 

2.

Vector dot product

\(\begin{array}{|lrcll|} \hline & \vec{n}\cdot \vec{v} &=& 0 \\ & \begin{pmatrix}n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot \begin{pmatrix}\mathbf{-4} \\ \mathbf{0} \\ \mathbf{2} \end{pmatrix} &=& 0 \\ (1)& \mathbf{-4n_1+2n_3} &=& \mathbf{0} \\ \hline & \vec{n}\cdot \vec{w} &=& 0 \\ & \begin{pmatrix}n_1 \\ n_2 \\ n_3 \end{pmatrix} \cdot \begin{pmatrix}\mathbf{0} \\ \mathbf{-3} \\ \mathbf{-1} \end{pmatrix} &=& 0 \\ (2) & \mathbf{-3n_2-n_3} &=& \mathbf{0} \\ \hline (3) & \mathbf{n_1+n_2+n_3} &=& \mathbf{7} \\ \hline \hline \end{array}\)

\(\begin{array}{|lrcll|} \hline (1)& \mathbf{-4n_1+2n_3} &=& \mathbf{0} \\ &2n_3&=&4n_1 \quad | \quad :2 \\ & \mathbf{n_3} &=& \mathbf{2n_1} \\\\ (2) & \mathbf{-3n_2-n_3} &=& \mathbf{0} \\ & \mathbf{n_3} &=& \mathbf{-3n_2} \\\\ & n_3= 2n_1 &=& -3n_2 \\ & 2n_1 &=& -3n_2 \quad | \quad :2 \\ & \mathbf{n_1} &=& \mathbf{-\dfrac{3}{2}n_2} \\\\ (3) & \mathbf{n_1+n_2+n_3} &=& \mathbf{7} \\ & -\dfrac{3}{2}n_2 + n_2 + -3n_2 &=& 7 \\ & -\dfrac{3}{2}n_2 -2n_2 &=& 7 \quad | \quad \cdot (-1 )\\ & \dfrac{3}{2}n_2 +2n_2 &=& -7 \\ & \dfrac{7}{2}n_2 &=& -7 \quad | \quad \cdot \dfrac{2}{7} \\ & n_2 &=& -7\cdot \dfrac{2}{7} \\ & \mathbf{n_2} &=& \mathbf{-2} \\ \hline & n_3 &=& -3n_2 \\ & n_3 &=& -3\cdot (-2) \\ & \mathbf{n_2} &=& \mathbf{6} \\ \hline & n_1 &=& -\dfrac{3}{2}n_2 \\ & n_1 &=& \left(-\dfrac{3}{2}\right)\cdot(-2) \\ & \mathbf{n_2} &=& \mathbf{3} \\\\ & \mathbf{\vec{n}} &=& \begin{pmatrix}\mathbf{3} \\ \mathbf{-2} \\ \mathbf{6} \end{pmatrix} \\ \hline \end{array}\)

 

laugh

17 авг. 2019 г.